Worksheet 7/11. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Invariant subspaces

1. Consider the matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Show that

$$
U=\left\{\underline{x} \in \mathbb{C}^{4} \mid x_{1}+x_{2}+x_{3}+x_{4}=0\right\} \subset \mathbb{C}^{4}
$$

is A-invariant. Determine the eigenvalues of A (you should have seen that 1 is an eigenvalue of A). Determine the 1 -eigenspace E_{1}. Find an A-invariant direct sum complement of U.
2. Provide a criterion for determining when a $n \times n$ matrix A is diagonalisable using A-invariant subspaces of \mathbb{C}^{n}.
(Your criterion should be of the form, A is diagonalisable if and only if \mathcal{P}, where \mathcal{P} is some property of \mathbb{C}^{n} related to A-invariant subspaces.

Nilpotent endomorphisms

4. Show that the following matrices are nilpotent and determine an invertible matrix P such that $P^{-1} A P$ is a block diagonal matrix consisting of 0 -Jordan blocks of nonincreasing size as you look from left to right. Determine the partition associated to $A, \pi(A)$.
5. $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.
6. $A=0_{3} \in \operatorname{Mat}_{3}(\mathbb{C})$, the zero matrix.
7. $A=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & -1\end{array}\right]$.
8. $A=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
9. $A=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Are the matrices in 4 , 5 similar? Justify your answer.

