Worksheet 7/3. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Diagonalisation

1. Which of the following matrices are diagonalisable? Justify your answer carefully.
2. $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
3. $\left[\begin{array}{ll}2 & -2 \\ 2 & -2\end{array}\right]$
4. $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
5. $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
6. $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

For those matrices A that are diagonalisable find an invertible matrix P such that $P^{-1} A P$ is diagonal. Which of the above matrices are invertible?
2. Let $A \in \operatorname{Mat}_{6}(\mathbb{C})$ be such that $\operatorname{rank}(A)=2$, and $A e_{1}=-e_{1}$, where e_{1} is the first standard basis vector of \mathbb{C}^{6}. Is it necessarily true that A is diagonalisable? What if you know that A is similar to the matrix

$$
B=\left[\begin{array}{cc}
-I_{2} & 0 \\
0 & C
\end{array}\right],
$$

where $C \in \operatorname{Mat}_{4}(\mathbb{C})$, is A necessarily diagonalisable? Justify your answer. What are the eigenvalues of A in this case?
3. Let $A \in \operatorname{Mat}_{10}(\mathbb{C})$ and suppose that A is invertible. Suppose that $A^{11}=A$. What are the possible eigenvalues of A ? Is A diagonalisable? Justify your answer.

Invariant subspaces

4. Prove: let $\mathcal{B} \subset V$ be an ordered basis such that the matrix $[f]_{\mathcal{B}}$ is block diagonal, with two blocks. Then, $V=U \oplus W$, where both U and W are f-invariant.
5. Consider the matrix

$$
A=\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]
$$

where $t \in \mathbb{R}$. Prove that if $U \subset \mathbb{R}^{2}$ is A-invariant then $U=\{\underline{0}\}$. In particular, there are no nonzero B-invariant subspaces of \mathbb{R}^{2}, where

$$
B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Prove that there exists B-invariant subspaces of \mathbb{C}^{2}, however.

