Worksheet 7/3. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Elementary matrices

1. Determine the $4 \times$ elementary matrices corresponding to the elementary row/column operations

- swap row 2 with row j
- multiply row 3 by $\frac{1}{2}$
- swap column 2 with column 3
- add 2 times row 1 to row 3
- add -3 times column 4 to column 1.

2. Row/column reduce the following matrices until they take the form

$$
\begin{gathered}
{\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right] .} \\
A=\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right], \\
B=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & 3
\end{array}\right], \\
C=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

Now use elementary matrices to determine Q, P such that

$$
Q^{-1} A P=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] .
$$

Can you determine, using only Q and P, bases for $\operatorname{ker} T_{A}$ and $\operatorname{im} T_{A}$? Also, can you determine a basis of a direct sum complements of $\operatorname{ker} T_{A}, \operatorname{im} T_{A}$?

Eigenstuff

3. Determine the characteristic polynomial, eigenvalues, bases for eigenspaces for the following matrices

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],} \\
{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right], \quad\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right] .}
\end{gathered}
$$

What are the algebraic/geometric multiplicities of each eigenvalue you have found?

