Worksheet 6/28. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Finding bases

0 . Consider the following ordered bases of \mathbb{Q}^{3}

$$
\mathcal{S}^{(3)}, \mathcal{B}_{1}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}, \mathcal{B}_{2}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} .
$$

Given a linear morphism $f: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{3}$ it is usually quite easy to determine $[f]_{\mathcal{S}^{(3)}}$. How can you determine $[f]_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}$ assuming you know $[f]_{\mathcal{S}^{(3)}}$? What about $[f]_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}$
Use your method to determine $[f]_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}$ and $[f]_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}$, for

$$
f: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{3} ;\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto\left[\begin{array}{c}
-x_{1}+2 x_{3} \\
2 x_{1}+x_{2}+x_{3} \\
x_{2}-x_{3}
\end{array}\right]
$$

Consider the following bases of $\operatorname{Mat}_{2}(\mathbb{Q})$
$\mathcal{S}=\left(e_{11}, e_{12}, e_{21}, e_{22}\right), \mathcal{B}_{1}=\left(e_{11}, e_{12}-e_{21}, e_{22}, e_{12}+e_{21}\right), \mathcal{B}_{2}=\left(e_{11}+e_{22}, e_{21}, e_{12}, e_{11}-e_{22}\right)$.
Consider the linear morphism

$$
g: M a t_{2}(\mathbb{Q}) \rightarrow \operatorname{Mat}_{2}(\mathbb{Q}) ; A \mapsto A+A^{t}
$$

where A^{t} is the transpose of A. Determine $[g]_{\mathcal{S}}$ and use this to determine $[g]_{\mathcal{B}_{1}}$ and $[g]_{\mathcal{B}_{2}}$.
(This will require to compute the inverse of 4×4 matrices! Recall that to compute the inverse of an invertible $n \times n$ matrix B you form the $n \times 2 n$ matrix $\left[B I_{n}\right.$] and then row-reduce this to obtain $\left[I_{n} B^{-1}\right]$.)

1. In groups think about how to prove Theorem 1.7.3.
(You will need to use the uniqueness property of $[f]_{\mathcal{B}}^{\mathcal{C}}$ here.)
2. In groups think about how to prove Theorem 1.7.4.
(You should proceed in a similar manner as I did during class in proving the same statement for the standard matrix A_{f}.)
