Worksheet 6/28. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Finding bases

0. Consider the following ordered bases of \mathbb{Q}^3

$$\mathcal{S}^{(3)}, \ \mathcal{B}_1 = \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \ \mathcal{B}_2 = \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}.$$

Given a linear morphism $f : \mathbb{Q}^3 \to \mathbb{Q}^3$ it is usually quite easy to determine $[f]_{\mathcal{S}^{(3)}}$. How can you determine $[f]_{\mathcal{B}_1}^{\mathcal{B}_2}$ assuming you know $[f]_{\mathcal{S}^{(3)}}$? What about $[f]_{\mathcal{B}_2}^{\mathcal{B}_1}$

Use your method to determine $[f]_{\mathcal{B}_1}^{\mathcal{B}_2}$ and $[f]_{\mathcal{B}_2}^{\mathcal{B}_1}$, for

$$f: \mathbb{Q}^3 \to \mathbb{Q}^3$$
; $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} -x_1 + 2x_3 \\ 2x_1 + x_2 + x_3 \\ x_2 - x_3 \end{bmatrix}$.

Consider the following bases of $Mat_2(\mathbb{Q})$

$$\mathcal{S} = (e_{11}, e_{12}, e_{21}, e_{22}), \ \mathcal{B}_1 = (e_{11}, e_{12} - e_{21}, e_{22}, e_{12} + e_{21}), \ \mathcal{B}_2 = (e_{11} + e_{22}, e_{21}, e_{12}, e_{11} - e_{22}).$$

Consider the linear morphism

$$g: Mat_2(\mathbb{Q})
ightarrow Mat_2(\mathbb{Q})$$
; $A \mapsto A + A^t$,

where A^t is the transpose of A. Determine $[g]_{\mathcal{S}}$ and use this to determine $[g]_{\mathcal{B}_1}$ and $[g]_{\mathcal{B}_2}$.

(This will require to compute the inverse of 4×4 matrices! Recall that to compute the inverse of an invertible $n \times n$ matrix B you form the $n \times 2n$ matrix $[B I_n]$ and then row-reduce this to obtain $[I_n B^{-1}]$.)

1. In groups think about how to prove Theorem 1.7.3.

(You will need to use the uniqueness property of $[f]_{\mathcal{B}}^{\mathcal{C}}$ here.)

2. In groups think about how to prove Theorem 1.7.4.

(You should proceed in a similar manner as I did during class in proving the same statement for the standard matrix $A_{f.}$)