Worksheet 6/27. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Finding bases

0 . This problem shows you how to find vectors $v \notin \operatorname{span}_{\mathbb{K}} E$, for non-spanning subsets $E \subset V$, when V admits a 'standard basis'.

Consider $V=\mathbb{K}^{n}$. Then, we have the standard ordered basis $\mathcal{S}^{(n)}=\left(e_{1}, \ldots, e_{n}\right)$. Let $E=$ $\left\{a_{1}, \ldots, a_{k}\right\} \subset V$ is a non-spanning subset. Consider the vector of variables

$$
\underline{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] .
$$

Form the matrix equation

$$
A \underline{x}=\underline{b}
$$

where $A=\left[a_{1} \cdots a_{k}\right]$. Then, row-reducing the augmented matrix [$A \underline{b}$] will give some $n \times(k+1)$ matrix

$$
[U \underline{c}]=\left[\begin{array}{cc}
U^{\prime} & \underline{c}^{\prime} \\
0 & p_{1}(\underline{b}) \\
\vdots & \vdots \\
0 & p_{r}(\underline{b})
\end{array}\right]
$$

where U^{\prime} is the nonzero part of U and $p_{i}(\underline{b})$ are linear expressions in the variables b_{1}, \ldots, b_{n}. Then, $\underline{y} \in \operatorname{span}_{\mathbb{K}} E$ if and only if $p_{1}(\underline{y})=\ldots=p_{r}(\underline{y})=0$. (You DO NOT have to show this. If you have time think about why this is true.)
For example, consider the subset

$$
E=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\} \subset \mathbb{Q}^{3},
$$

and row-reduce

$$
\left[\begin{array}{ccc}
1 & 1 & b_{1} \\
0 & -1 & b_{2} \\
-1 & 1 & b_{3}
\end{array}\right] \sim ?
$$

What are the linear equations defining $\operatorname{span}_{\mathbb{K}} E$ in this case?
Can you see how to generalise this to the case $V=\mathbb{K}^{S}$, for a finite set S ? In particular, you can now determine the equations defining $\operatorname{span}_{\mathbb{K}} E$, for $E \subset M a t_{m, n}(\mathbb{K})$.

1. The following subsets $E \subset V$ are NOT bases of the \mathbb{K}-vector space V. Explain why.

In each case obtain a basis of V using E : so, you will either have to make E smaller or larger to obtain a basis.

$$
E=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]\right\} \subset \mathbb{Q}^{3}=V,
$$

$$
\begin{gathered}
E=\left\{\left[\begin{array}{l}
2 \\
5
\end{array}\right]\right\} \subset \mathbb{R}^{2}=V \\
E=\left\{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \subset \mathbb{Q}^{3}=V \\
E=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]\right\} \subset \mathbb{Q}^{4}=V \\
E=\left\{e_{12}, e_{22},\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\right\} \subset \operatorname{Mat}_{2}(\mathbb{C})=V .
\end{gathered}
$$

(If E is not a spanning set, you will find it useful to use the first part of this worksheet to help you out.)

