Worksheet 6/25. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Linear morphisms

0 . Show that \mathbb{K}^{n} and $\mathbb{K}^{[n]}$ are isomorphic as \mathbb{K}-vector spaces. Recall that $[n]=\{1, \ldots, n\}$. Therefore, you must define a function

$$
f: \mathbb{K}^{n} \rightarrow \mathbb{K}^{[n]}
$$

which is a bijective \mathbb{K}-linear moprhism.

Bases, dimension

1. Let V be a \mathbb{K}-vector space, $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right) \subset V$ an ordered basis of V. Show that the \mathcal{B}-coordinate morphism defined in class is a bijective \mathbb{K}-linear morphism.
2. Let S be a finite set, $V=\mathbb{K}^{S}$. Show that the subset $\left\{e_{s} \mid s \in S\right\}$ is a basis of \mathbb{K}^{S}.

In particular, what is a basis of $\operatorname{Mat}_{m, n}(\mathbb{K}) \stackrel{\text { def }}{=} \mathbb{K}^{[m] \times[n]}$?
3.* Explain why $\left\{e_{i} \mid i \in \mathbb{N}\right\} \subset \mathbb{Q}^{\mathbb{N}}$ is not a basis of $\mathbb{Q}^{\mathbb{N}}$ - your conclusions from a previous worksheet will help with this problem.
4. Which of the following subsets are bases:

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} \subset \mathbb{Q}^{3}, \\
& \left\{\left[\begin{array}{c}
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
100
\end{array}\right],\left[\begin{array}{c}
-2 \\
10
\end{array}\right]\right\} \subset \mathbb{R}^{2}, \\
& \{f, g, h\} \subset \mathbb{Q}^{\{1,2,3\}},
\end{aligned}
$$

where
$(f(1)=2, f(2)=0, f(3)=1),(g(1)=0, g(2)=-1, g(3)=1),(h(1)=1, h(2)=1, h(3)=0)$.

