Worksheet 6/21. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Linear independence, span

1. Prove: if $E \subset V$ nonempty, V a \mathbb{K}-vector space and there exists $v \in E$ such that v is a linear combination of some of the other vectors in E, then E is linearly dependent.
2. Is the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ an element of $\operatorname{span}_{\mathbb{Q}} E$, where

$$
E=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} ?
$$

If $\underline{b} \in \mathbb{K}^{m}$ and $E \subset \mathbb{K}^{n}$ is a (nonempty) collection of finitely many vectors, how can you determine if $\underline{b} \in \operatorname{span}_{\mathbb{K}} E$?

Linear morphisms

1. Check that $\operatorname{Hom}_{\mathbb{K}}(V, W)$ is a \mathbb{K}-vector space, ie, check that $f+g, \lambda f$ are linear and that $0_{H_{0} m_{\mathbb{K}}(V, W)},-f$ are well-defined.
2. Let $f \in \operatorname{Hom}_{\mathbb{K}}\left(\mathbb{K}^{n}, \mathbb{K}^{m}\right)$ be a \mathbb{K}-linear morphism, A_{f} the standard matrix associated to f (defined in class and in the notes). Understand why

- f is injective if and only if A_{f} has a pivot in every column,
- f is surjective if and only if A_{f} has a pivot in every row.

