Worksheet 6/21. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Linear independence, span

1. Prove: if $E \subset V$ nonempty, V a \mathbb{K} -vector space and there exists $v \in E$ such that v is a linear combination of some of the other vectors in E, then E is linearly dependent.

2. Is the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ an element of $\operatorname{span}_{\mathbb{Q}}E$, where $E = \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}?$

If $\underline{b} \in \mathbb{K}^m$ and $E \subset \mathbb{K}^n$ is a (nonempty) collection of finitely many vectors, how can you determine if $\underline{b} \in \text{span}_{\mathbb{K}}E$?

Linear morphisms

1. Check that $\text{Hom}_{\mathbb{K}}(V, W)$ is a \mathbb{K} -vector space, ie, check that f + g, λf are linear and that $0_{\text{Hom}_{\mathbb{K}}(V,W)}$, -f are well-defined.

2. Let $f \in \text{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^m)$ be a \mathbb{K} -linear morphism, A_f the standard matrix associated to f (defined in class and in the notes). Understand why

- f is injective if and only if A_f has a pivot in every column,
- f is surjective if and only if A_f has a pivot in every row.