Worksheet 6/20. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Sum, direct sum

1. In \mathbb{R}^{2} give examples of subspaces $U, W \subset \mathbb{R}^{2}$ such that $U+W=\mathbb{R}^{2}$. Is your example a direct sum (ie, is $U \cap W=\left\{0_{\mathbb{R}^{2}}\right\}$?).
Is it possible to find subspaces $U, W \subset \mathbb{R}^{2}$ such that $U+W=\mathbb{R}^{2}$ but this sum is not a direct sum?
2. Do the same thing for \mathbb{R}^{3}.

Linear independence

1. Explain why V is always linearly dependent, if V is a \mathbb{K}-vector space. If $U \subset V$ is a vector subspace is it true that U is linearly dependent? Explain your answer.
2. Consider the \mathbb{Q}-vector space $\mathbb{Q}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{Q}\}$. For $f \in \mathbb{Q}^{\mathbb{N}}$ we can denote f as an infinite sequence

$$
f \equiv(f(1), f(2), f(3), f(4), \ldots)
$$

Let $e_{i} \in \mathbb{Q}^{\mathbb{N}}, i \in \mathbb{N}$, denote the functions $e_{i}: \mathbb{N} \rightarrow \mathbb{Q}$, with $e_{i}(j)=0$, if $i \neq j$, and $e_{i}(i)=1$. So, in the above notation, e_{i} is the infinite sequence with 0 everywhere except a 1 in the $i^{\text {th }}$ entry.

Explain why $E=\left\{e_{i} \mid i \in \mathbb{N}\right\} \cup\{(1,1,1,1, \ldots)\}$ is linearly independent. (You can either show this directly or use a theorem from the notes to help you.)
3. Let $E \subset \mathbb{C}^{n}$ be a finite nonempty subset. Write down an algorithm ${ }^{1}$ to determine the linear (in)dependence of E.

[^0]
[^0]: ${ }^{1}$ 'Algorithm' = 'recipe'.

