Worksheet 6/18. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Sets, functions

Get yourselves into groups of 4-5. Denote your group of students by G, or whatever. Find functions $f: G \rightarrow G$ that are injective, surjective and bijective.

Fields

Is it possible to row-reduce the following matrices to echelon form using only \mathbb{Q}-scalars? What about reduced echelon form?

$$
A=\left[\begin{array}{cc}
1 & -7 \\
-350 / 12 & 14
\end{array}\right], \quad B=\left[\begin{array}{cc}
\sqrt{2} & 1 \\
-1 & 0
\end{array}\right], \quad C=\left[\begin{array}{cc}
4 & \sqrt{2} \\
1 & 2 \sqrt{2}
\end{array}\right] .
$$

Is it possible to row-reduce these matrices to reduced echelon form using $\mathbb{Q}(\sqrt{2})$-scalars?

Vector spaces, subspaces

1. Rewrite Axioms VS1-VS8 by replacing the functions α, σ by the usual notations ' + ' and ' \because '.
2. Consider the \mathbb{K}-vector space (Z, α, σ) where Z contains exactly one element. Why is it true that there can only exist one \mathbb{K}-vector space structure on Z, ie, if (Z, β, τ) is another \mathbb{K}-vector space, then $\alpha=\beta, \sigma=\tau$.
3. Which of the following subsets U are subspaces of the given \mathbb{K}-vector space V ? Verify your answer.

$$
\text { a) } U=\left\{\underline{x} \in \mathbb{R}^{2} \mid 2 x_{1}-x_{2}=0\right\} \subset \mathbb{R}^{2}=V
$$

b) $U=\left\{A \in \operatorname{Mat}_{2,2}(\mathbb{Q}) \mid A=-A^{t}\right\} \subset \operatorname{Mat}_{2,2}(\mathbb{Q})=V$, where A^{t} is the transpose of A,

$$
c)^{*} \quad U=\left\{f \in \mathbb{R}^{\{1,2,3\}} \mid f(1)=f(2)=f(3)\right\} \subset \mathbb{R}^{\{1,2,3\}}=V
$$

For c): it will might help to rewrite the property defining U.

