Math 110, Summer 2012 Short Homework 9 (SOME) SOLUTIONS

Due Thursday 7/26, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
0. Was this homework assignment too easy/too difficult/about right? Any other comments are welcome.

Calculations

1. Give an example of a nondegenerate antisymmetric bilinear form on \mathbb{Q}^{4}.

Solution: The bilinear form $B_{A} \in \operatorname{Bil}_{\mathbb{Q}}\left(\mathbb{Q}^{4}\right)$, where

$$
A=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

satisfies the required properties as A is antisymmetric and invertible.
2. Determine the matrix of B with respect to the given basis \mathcal{B}. State whether the bilinear form is symmetric/antisymmetric/neither and if it is nondegenerate:
i) $B: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} ;(\underline{x}, \underline{y}) \mapsto x_{1} y_{1}+3 x_{2} y_{2}+y_{3} x_{2}-10 x_{3} y_{2}, \mathcal{B}=\left(\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)$.
ii) $B: \operatorname{Mat}_{3}(\mathbb{Q}) \times \operatorname{Mat}_{3}(\mathbb{Q}) \rightarrow \mathbb{Q} ;(X, Y) \mapsto \operatorname{tr}(X Y)$,

$$
\mathcal{B}=\left(e_{11}, e_{12}-e_{21}, e_{32}, e_{13}-e_{31}, e_{13}+e_{31}, e_{22}+e_{33}, e_{33}, e_{23}-2 e_{32}, e_{12}+e_{11}\right)
$$

Solution:
i) We have $[B]_{\mathcal{B}}=P^{t}[B]_{\mathcal{S}^{(3)}} P$, where

$$
[B]_{\mathcal{S}^{(3)}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 & 1 \\
0 & -10 & 0
\end{array}\right], P=P_{\mathcal{S}^{(3)} \mathcal{B}}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right] .
$$

Hence,

$$
[B]_{\mathcal{B}}=\left[\begin{array}{ccc}
1 & 1 & 11 \\
1 & 1 & -9 \\
0 & 2 & 4
\end{array}\right]
$$

B is neither symmetric nor antisymmetric as the above matrix is neither. Since $[B]_{\mathcal{B}}$ is invertible then B is nondegenerate.
ii) We have $[B]_{\mathcal{B}}=P^{t}[B]_{\mathcal{S}^{(3,3)}} P$, where

$$
\mathcal{S}^{(3,3)}=\left(e_{11}, e_{12}, e_{13}, e_{21}, e_{22}, e_{23}, e_{31}, e_{32}, e_{33}\right)
$$

and

$$
P=P_{\mathcal{S}^{(3)} \leftarrow \mathcal{B}}=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

$$
[B]_{\mathcal{S}^{(3)}}=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Then,

$$
[B]_{\mathcal{B}}=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -4 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Since the matrix $[B]_{\mathcal{B}}$ is symmetric and invertible, the bilinear form B is symmetric and nondegenerate.
3. Determine the adjoint of f with respect to B :
i) $B: \mathbb{R}^{4} \times \mathbb{R}^{4} \rightarrow \mathbb{R} ;(\underline{x}, \underline{y}) \mapsto \underline{x} \cdot \underline{y}, \quad f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4} ; \underline{x} \mapsto A \underline{x}$, where

$$
A=\left[\begin{array}{cccc}
\pi & -1 & 0 & 0 \\
e^{2} & \sqrt{2} & -1 & 0 \\
0 & 1 & 1 & 0 \\
-\sqrt{5} & 0 & 10 & 1
\end{array}\right]
$$

ii) $B: \operatorname{Mat}_{2}(\mathbb{Q}) \times \operatorname{Mat}_{2}(\mathbb{Q}) \rightarrow \mathbb{Q} ;(X, Y) \mapsto \operatorname{tr}(X Y), \quad f: \operatorname{Mat}_{2}(\mathbb{Q}) \rightarrow \operatorname{Mat}_{2}(\mathbb{Q}) ; X \mapsto X^{t}$.

Proofs

4. Let $B \in \operatorname{Bil}_{\mathbb{K}}(V)$ and $\mathcal{B} \subset V$ be an ordered basis. Prove that $[-]_{\mathcal{B}}: \operatorname{Bil}_{\mathbb{K}}(V) \rightarrow M a t_{n}(\mathbb{K})(n=\operatorname{dim} V)$ is linear and bijective.
Solution: Let $B, B^{\prime} \in \operatorname{Bil}_{\mathbb{K}}(V), \lambda, \mu \in \mathbb{K}$. Then,

$$
\left[\lambda B+\mu B^{\prime}\right]_{\mathcal{B}}=\left[a_{i j}\right], \quad a_{i j}=\lambda B\left(b_{i}, b_{j}\right)+\mu B^{\prime}\left(b_{i}, b_{j}\right)
$$

Also,
$\lambda[B]_{\mathcal{B}}+\mu[B]_{\mathcal{B}}=\lambda\left[c_{i j}\right]+\mu\left[d_{i j}\right]=\left[e_{i j}\right], \quad c_{i j}=B\left(b_{i}, b_{j}\right), d_{i j}=B^{\prime}\left(b_{i}, b_{j}\right) \Longrightarrow e_{i j}=\lambda B\left(b_{i}, b_{j}\right)+\mu B^{\prime}\left(b_{i}, b_{j}\right)$.
Hence, for every i, j, we have $e_{i j}=a_{i j}$ so that

$$
\left[\lambda B+\mu B^{\prime}\right]_{\mathcal{B}}=\lambda[B]_{\mathcal{B}}+\mu\left[B^{\prime}\right]_{\mathcal{B}}
$$

and $[-]_{\mathcal{B}}$ is linear.
Suppose that $B \in \operatorname{Bil}_{\mathbb{K}}(V)$ is such that $[B]_{\mathcal{B}}=0_{n}$. Then, for any $u, v \in V$, we have

$$
B(u, v)=[u]_{\mathcal{B}}^{t}[B]_{\mathcal{B}}[v]_{\mathcal{B}}=[u]_{\mathcal{B}}^{t} 0_{n}[v]_{\mathcal{B}}=0
$$

so that $B=0$ is the zero bilinear form. Hence, $[-]_{\mathcal{B}}$ is injective.

Suppose that $X \in M a t_{n}(\mathbb{K})$. Consider the function

$$
B: V \times V \rightarrow \mathbb{K} ;(u, v) \mapsto[u]_{\mathcal{B}}^{t} X[v]_{\mathcal{B}}
$$

Then, you can check that B is a bilinear form and, moreover, since we have

$$
[u]_{\mathcal{B}}^{t} X[v]_{\mathcal{B}}=B(u, v)
$$

for every $u, v \in V$, then we must have that $X=[B]_{\mathcal{B}}$, by the defining property of $[B]_{\mathcal{B}}$.
5. Prove that every bilinear form $B \in \operatorname{Bil}_{\mathbb{K}}\left(\mathbb{K}^{n}\right)$ is of the form $B=B_{A}$, for some $A \in \operatorname{Mat}_{n}(\mathbb{K})$.

Solution: Let $B \in \operatorname{Bil}_{\mathbb{K}}\left(\mathbb{K}^{n}\right)$. Consider the matrix

$$
[B]_{\mathcal{S}^{(n)}}=A=\left[a_{i j}\right] \in M a t_{n}(\mathbb{K})
$$

Then, claim that $B=B_{A}$: indeed, let $u, v \in \mathbb{K}^{n}$. Then, we have that

$$
B(u, v)=[u]_{\mathcal{S}^{(n)}}^{t}[B]_{\mathcal{S}^{(n)}}[v]_{\mathcal{S}^{(n)}}=u^{t} A v=B_{A}(u, v)
$$

Hence, as the functions B and B_{A} agree for all inputs $(u, v) \in \mathbb{K}^{n} \times \mathbb{K}^{n}$, we must have that $B=B_{A}$.
6. Let $B \in \operatorname{Bil}_{\mathbb{K}}(V)$. Prove that if $\sigma_{B}: V \rightarrow V^{*}$ is injective then B is nondegenerate.

Solution: Suppose that σ_{B} is injective. Then, we have

$$
\operatorname{ker} \sigma_{B}=\left\{v \in V \mid \sigma_{B}(v) \in V^{*}\right\}=\{0 v\}
$$

So, if $v \in V$ is such that $\sigma_{B}(v)=0_{V^{*}}$ is the zero linear form (ie, for every $u \in V$ we have $\left.\left(\sigma_{B}(v)\right)(u)=0 \in \mathbb{K}\right)$ then $v=0_{v}$.

Now, suppose that $v \in V$ is such that

$$
B(u, v)=0, \text { for every } u \in V
$$

We want to show that $v=0_{V}$: since

$$
0=B(u, v) \stackrel{\text { def }}{=}\left(\sigma_{B}(v)\right)(u), \quad \text { for every } u \in V
$$

then we must have that $v=0_{V}$, by injectivity of σ_{B}. Hence, we see that B is nondegenerate.
7. Prove the polarisation identity: if $B \in \operatorname{Bil}_{\mathbb{K}}(V)$ is symmetric then, for every $u, v \in V$,

$$
B(u, v)=\frac{1}{2}(B(u+v, u+v)-B(u, u)-B(v, v))
$$

8. Let $B \in \operatorname{Bil}_{K}(V)$ be antisymmetric. Prove that $B(u, u)=0$, for every $u \in V$.

Solution: Let $u \in V$. Then, as B is antisymmetric we have that

$$
B(u, u)=-B(u, u) \Longrightarrow 2 B(u, u)=0 \in \mathbb{K} \Longrightarrow B(u, u)=0
$$

Since u is arbitrary this holds for every $u \in V$.

