Math 110, Summer 2012 Short Homework 8 (SOME) SOLUTIONS

Due Monday 7/23, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
0. Was this homework assignment too easy/too difficult/about right? Any other comments are welcome.

Calculations

1. Consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

i) Determine $\chi_{A}(t)$.
ii) Show that A is NOT diagonalisable without appealing to algebraic/geometric multiplicities. (Use the diagonalisablity criterion involving the minimal polynomial. What must the minimal polynomial be if A were diagonalisable?
iii) Determine the subspaces

$$
U_{1}=\operatorname{ker} T_{\left(A-2 I_{4}\right)^{3}}, \quad U_{2}=\operatorname{ker} T_{A},
$$

and a basis $\mathcal{C}=\left(c_{1}, c_{2}, c_{3}\right) \subset U_{1}$.
iv) Consider the endomorphism

$$
f: U_{1} \rightarrow U_{1} ; u \mapsto A u-2 u
$$

Determine $B=[f]_{\mathcal{C}}$.
v) Show that B is nilpotent and find a basis $\mathcal{C}^{\prime} \subset U_{1}$ such that $[f]_{\mathcal{C}^{\prime}}$ is block diagonal, each block being a 0-Jordan block.
vi) Determine an invertible matrix $P \in G L_{4}(\mathbb{C})$ such that

$$
P^{-1} A P=J
$$

where J is the Jordan form of A.

Solution:

i) We have

$$
\chi_{A}(t)=t(t-2)^{3}
$$

ii) Since

$$
A\left(A-2 I_{4}\right)=\left[\begin{array}{llll}
0 & 0 & 2 & 2 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \neq 0_{4}
$$

then the minimal polynomial $\mu_{A} \neq t(t-2)$, so that A can't be diagonalisable (A is diagonalisable if and only if μ_{A} is a product of distinct linear factors).
iii) We have

$$
\left(A-2 I_{4}\right)^{3}=\left[\begin{array}{cccc}
-4 & 4 & 0 & 0 \\
4 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so that

$$
U_{1}=\operatorname{ker} T_{\left(A-2 I_{4}\right)^{3}}=\operatorname{span}_{\mathbb{C}}\left\{e_{1}+e_{2}, e_{3}, e_{4}\right\}
$$

Also,

$$
A \sim\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

and we have

$$
U_{2}=\operatorname{ker} T_{A}=\operatorname{span}_{\mathbb{C}}\left\{e_{1}-e_{2}\right\}
$$

In particular, we see that we can take

$$
\mathcal{C}=\left(e_{1}+e_{2}, e_{3}, e_{4}\right)=\left(c_{1}, c_{2}, c_{3}\right) \subset \mathbb{C}^{4}
$$

iv) We need to determine

$$
B=\left[\left[f\left(c_{1}\right)\right]_{\mathcal{C}}\left[f\left(c_{2}\right)\right]_{\mathcal{C}}\left[f\left(c_{3}\right)\right]_{\mathcal{C}}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

v) Since $B^{2}=0_{3}$ we see that B is nilpotent. Now, using the method of section 2.3 to find a matrix P such that $P^{-1} B P$ is block diagonal and each block is a 0 -Jordan block, we can take

$$
P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

That is we have a basis $\mathcal{B}^{\prime}=\left(e_{1}, e_{2}, e_{2}-e_{3}\right) \subset \mathbb{C}^{3}$ such that

$$
\left[T_{B}\right]_{\mathcal{B}^{\prime}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Sicne U_{1} is isomorphic to \mathbb{C}^{3} via the \mathcal{C}-coordinate morphsim, we see that with respect to the basis

$$
\mathcal{C}^{\prime}=\left(\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right]\right) \subset U_{1}
$$

we have

$$
[f]_{\mathcal{C}^{\prime}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

vi) We take the union of \mathcal{C}^{\prime} and a basis $\mathcal{C}^{\prime \prime} \subset U_{2}$. Since U_{2} is one dimensional (as $\mathbb{C}^{4}=U_{1} \oplus U_{2}$) then we can take a basis $\mathcal{C}^{\prime \prime}=\left(e_{1}-e_{2}\right)$. Hence, if we set

$$
P=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

then

$$
P^{-1} A P=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Proofs

2. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ be such that $\chi_{f}(t)=t^{\operatorname{dim} V}$. Prove that f is nilpotent.

Solution: We use the Cayley-Hamilton Theorem: $\chi_{f} \in \operatorname{ker} \rho_{f}$, where ρ_{f} is the representation of $\mathbb{C}[t]$ defined by f. This tells us that

$$
f^{\operatorname{dim} V}=0_{\operatorname{End}_{\mathbb{C}}(V)},
$$

so that f is nilpotent.
3. Let $A \in \operatorname{Mat}_{7}(\mathbb{C})$ be an invertible matrix and such that

$$
A^{7}-6 A^{4}-6 A^{6}+11 A^{5}=0_{7} \in \operatorname{Mat}_{7}(\mathbb{C})
$$

Prove that A is diagonalisable. (Hint: It may be useful to know that 1 is an eigenvalue of A. You will need to perform the division algorithm (ie, long division of polynomials) at some point in your solution.)
Solution: Since A is invertible then A^{-1} exists and we can multiply the above polynomial on both sides by A^{-4}. Then, we obtain

$$
A^{3}-6 I_{7}-6 A^{2}+11 A=0{ }_{7}
$$

Hence,

$$
f=t^{3}-6 t^{2}+11 t-6 \in \operatorname{ker} \rho_{A},
$$

where ρ_{A} is the representation of $\mathbb{C}[t]$ defined by A. You can check that

$$
f=(t-1)(t-2)(t-3)
$$

using long division and the hint that $t=1$ is a root of $t^{4} f$. Then, we must have that μ_{A} divides f. Since f is product of distinct linear factors, the same must be true of μ_{A} : if μ_{A} has repeated linear factors then these would also appear in f. Hence, A is diagonalisable, by a result from section 2.5 .

