Math 110, Summer 2012 Short Homework 8

Due Monday 7/23, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
0. Was this homework assignment too easy/too difficult/about right? Any other comments are welcome.

Calculations

1. Consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

i) Determine $\chi_{A}(t)$.
ii) Show that A is NOT diagonalisable without appealing to algebraic/geometric multiplicities. (Use the diagonalisablity criterion involving the minimal polynomial. What must the minimal polynomial be if A were diagonalisable?
iii) Determine the subspaces

$$
U_{1}=\operatorname{ker} T_{\left(A-2 I_{4}\right)^{3}}, \quad U_{2}=\operatorname{ker} T_{A},
$$

and a basis $\mathcal{C}=\left(c_{1}, c_{2}, c_{3}\right) \subset U_{1}$.
iv) Consider the endomorphism

$$
f: U_{1} \rightarrow U_{1} ; u \mapsto A u-2 u
$$

Determine $B=[f]_{\mathcal{C}}$.
v) Show that B is nilpotent and find a basis $\mathcal{C}^{\prime} \subset U_{1}$ such that $[f]_{\mathcal{C}^{\prime}}$ is block diagonal, each block being a 0-Jordan block.
vi) Determine an invertible matrix $P \in G L_{4}(\mathbb{C})$ such that

$$
P^{-1} A P=J
$$

where J is the Jordan form of A.

Proofs

2. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ be such that $\chi_{f}(t)=t^{\operatorname{dim} V}$. Prove that f is nilpotent.
3. Let $A \in \operatorname{Mat}_{7}(\mathbb{C})$ be an invertible matrix and such that

$$
A^{7}-6 A^{4}-6 A^{6}+11 A^{5}=0_{7} \in \operatorname{Mat}_{7}(\mathbb{C})
$$

Prove that A is diagonalisable. (Hint: It may be useful to know that 1 is an eigenvalue of A. You will need to perform the division algorithm (ie, long division of polynomials) at some point in your solution.)

