Math 110, Summer 2012 Short Homework 7

Due Monday 7/12, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the \mathbb{C}-vector space $\mathbb{C}_{3}[t]$ consisting of polynomials with \mathbb{C}-coefficients that have degree at most 3 . We have $\operatorname{dim}_{\mathbb{C}} \mathbb{C}_{3}[t]=4$. Consider the \mathbb{C}-linear endomorphism

$$
D: \mathbb{C}_{3}[t] \rightarrow \mathbb{C}_{3}[t] ; f \mapsto \frac{d f}{d t}
$$

a) Show that D is a nilpotent endomorphism and determine the exponent of $D, \eta(D)$.
b) For each $k, 0 \leq k \leq \eta(D)$, determine

$$
H_{k}=\left\{f \in \mathbb{C}_{3}[t] \mid h t(f) \leq k\right\},
$$

and determine $\operatorname{dim} H_{k}=m_{k}$.
c) Recall the algorithm from Section 2.3 used to determine a basis of V, given a nilpotent endomorphism $g \in \operatorname{End}_{\mathbb{C}}(V)$. Using this algorithm find an ordered basis \mathcal{B} of $\mathbb{C}_{3}[t]$ such that $[D]_{\mathcal{B}}$ is block diagonal matrix, each block being a 0 -Jordan block.
(Hint: there is only one 0-Jordan block.)

Solution:

a) You can easily check that D^{4} is the zero morphism: for any $f \in \mathbb{C}_{3}[t]$ we have $D^{4}(f)=0_{\mathbb{C}_{3}[t]}$. Hence, $\eta(D)=4$.
b) For each $0 \leq k \leq 4$ we have

$$
H_{k}=\left\{f \in \mathbb{C}_{3}[t] \mid D^{k}(f)=0\right\}=\left\{f \in \mathbb{C}_{3}[t] \mid \operatorname{deg} f \leq k-1\right\}
$$

Then, $\operatorname{dim} H_{k}=\operatorname{dim} \mathbb{C}_{k-1}[t]=k$.
c) We proceed through the algorithm described in the notes: ${ }^{1}$

We have

$$
\mathbb{C}_{3}[t]=H_{4}=H_{3} \oplus G_{4}=\operatorname{span}\left\{1, t, t^{2}\right\} \oplus \operatorname{span}\left\{t^{3}\right\}
$$

where we have used that $t^{3} \notin H_{3}$ (so that $G_{4}=\operatorname{span}\left\{t^{3}\right\}$) and $H_{3}=\operatorname{span}\left\{1, t, t^{2}\right\}$. Thus, we have $z_{1}=t^{3}$. Then, since ht $\left(t^{3}\right)=4$ we have that $\left\{t^{3}, D\left(t^{3}\right), D^{2}\left(t^{3}\right), D^{3}\left(t^{3}\right)\right\}$ is linearly independent therefore must be a basis of $\mathbb{C}_{3}[t]$. If we let $\mathcal{B}=\left(6,6 t, 3 t^{2}, t^{3}\right)$ then

$$
[D]_{\mathcal{B}}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

2. Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{C})
$$

and consider the endomorphism

$$
R_{A}: \operatorname{Mat}_{2}(\mathbb{C}) \rightarrow \operatorname{Mat}_{2}(\mathbb{C}) ; B \mapsto B A
$$

[^0]a) Show that R_{A} is a nilpotent endomorphism and determine the exponent of $R_{A}, \eta\left(R_{A}\right)$.
b) For each $k, 0 \leq k \leq \eta\left(R_{A}\right)$, determine
$$
H_{k}=\left\{B \in \operatorname{Mat}_{2}(\mathbb{C}) \mid \operatorname{ht}(B) \leq k\right\}
$$
and determine $\operatorname{dim} H_{k}=m_{k}$.
c) As in $1 c$) above, determine an ordered basis $\mathcal{B} \subset M a t_{2}(\mathbb{C})$ such that $\left[R_{A}\right]_{\mathcal{B}}$ is a block diagonal matrix, each block being a 0-Jordan block.
(Hint: there is more than one 0-Jordan block in this case.)

Solution:

a) You can check that $R_{A}^{2}=0 \in \operatorname{End}_{\mathbb{C}}\left(\operatorname{Mat}_{2}(\mathbb{C})\right)$ so that $\eta\left(R_{A}\right)=2$.
b) We have, for each $0 \leq k \leq 2$ that

$$
H_{k}=\operatorname{ker} R_{A}^{k}=\left\{B \in \operatorname{Mat}(\mathbb{C}) \mid R_{A}^{k}(B)=0\right\}
$$

Thus, we have

$$
H_{0}=\{0\}, H_{1}=\left\{B \in \operatorname{Mat}_{2}(\mathbb{C}) \mid B A=0\right\}=\left\{\left.\left[\begin{array}{ll}
0 & a \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{C}\right\}, H_{2}=\operatorname{Mat}_{2}(\mathbb{C})
$$

Hence,

$$
m_{0}=0, m_{1}=2, m_{2}=4
$$

c) We have

$$
\operatorname{Mat}_{2}(\mathbb{C})=H_{2}=H_{1} \oplus G_{2}=H_{1} \oplus \operatorname{span}\left\{e_{11}, e_{21}\right\}
$$

so take $z_{1}=e_{11}, z_{2}=e_{21}$. Then, we know that $\left\{R_{A}\left(e_{11}\right), e_{11}, R_{A}\left(e_{21}\right), e_{21}\right\}$ is linearly independent and hence must be a basis. Thus, if we define

$$
\mathcal{B}=\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)
$$

we must have

$$
\left[R_{A}\right]_{\mathcal{B}}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Proofs

3. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, where V is a finite dimensional \mathbb{C}-vector space. Denote the eigenvalues of f by $\lambda_{1}, \ldots, \lambda_{k}$. Prove: f is diagonalisable if and only if, for every i, the algebraic multiplicity of λ_{i} is equal to the geometric multiplicity of λ_{i}.
(Looking at Proposition 2.1.14 and its proof may help here.)
4. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, where $\operatorname{dim} V=n$, and suppose that there is an ordered basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of V such that

$$
[f]_{\mathcal{B}}=\left[\begin{array}{cc}
A & B \\
0_{n-k, k} & C
\end{array}\right]
$$

Prove that $U=\operatorname{span}_{\mathbb{C}}\left\{b_{1}, \ldots, b_{k}\right\}$ is f-invariant.
Solution: Let $u \in \operatorname{span}_{\mathbb{C}}\left\{b_{1}, \ldots, b_{k}\right\}$. Then,

$$
u=c_{1} b_{1}+\ldots+c_{k} b_{k}, c_{1}, \ldots, c_{k} \in \mathbb{C}
$$

Thus, we have

$$
[f]_{\mathcal{B}}[u]_{\mathcal{B}}=\left[\begin{array}{cc}
A & B \\
0_{n-k, k} & C
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{k} \\
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
A \underline{C} \\
0 \\
\vdots \\
0
\end{array}\right],
$$

where $\underline{c}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{k}\end{array}\right] \in \mathbb{C}^{k}$. Then, $A \underline{c} \in \mathbb{C}^{k}$ since $A \in \operatorname{Mat}_{k}(\mathbb{C})$. Hence,

$$
[f(u)]_{\mathcal{B}}=[f]_{\mathcal{B}}[u]_{\mathcal{B}} \in \operatorname{span}_{\mathbb{C}}\left\{\left[b_{1}\right]_{\mathcal{B}}, \ldots,\left[b_{k}\right]_{\mathcal{B}}\right\},
$$

so that $f(u) \in \operatorname{span}_{\mathbb{C}}\left\{b_{1}, \ldots, b_{k}\right\}$, since the \mathcal{B}-coordinate morphism is an isomorphism.
(Short Homework 6) 2. Consider the matrix

$$
B=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \in \operatorname{Mat}_{3}(\mathbb{C})
$$

Show that the subspace

$$
U=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{C}^{3} \right\rvert\, x_{1}+x_{2}+x_{3}=0\right\} \subset \mathbb{C}^{3}
$$

is B-invariant and that 1 is an eigenvalue of B. Show that $E_{1} \cap U=\left\{0_{\mathbb{C}^{3}}\right\}$. Find a B-invariant subspace $W \subset V$ such that

$$
V=W \oplus U
$$

Justify your answer.
Solution: Let $\underline{x} \in U$ so that $x_{1}+x_{2}+x_{3}=0$. Then,

$$
B \underline{x}=\left[\begin{array}{l}
x_{3} \\
x_{1} \\
x_{2}
\end{array}\right]\left(=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)
$$

and $y_{1}+y_{2}+y_{3}=x_{3}+x_{1}+x_{2}=0$, so that $B \underline{x} \in U$. Hence, U is B-invariant.
You can check that

$$
B\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

so that 1 is an eigenvalue of B.
Let $z \in E_{1} \cap U$. Then, $B z=z$ and $z_{1}+z_{2}+z_{3}=0$. As $B z=z$ we must have

$$
\left[\begin{array}{l}
z_{3} \\
z_{1} \\
z_{2}
\end{array}\right]=B z=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right],
$$

so that $z_{3}=z_{1}=z_{2}$. Now, as $z_{1}+z_{2}+z_{3}=0$ this can only occur if $z_{1}=z_{2}=z_{3}=0$. Hence, $z=0$. As U is 2 dimensional (you can easily check this) and $E_{1}+U=E_{1} \oplus U \subset \mathbb{C}^{3}$ we must have

$$
3=\operatorname{dim} \mathbb{C}^{3} \geq \operatorname{dim} E_{1} \oplus U=\operatorname{dim} E_{1}+\operatorname{dim} U=\operatorname{dim} E_{1}+2 \geq 3
$$

since $\operatorname{dim} E_{1} \geq 1$. Hence, we have that $\operatorname{dim} E_{1} \oplus U=3$ so that $E_{1} \oplus U=\mathbb{C}^{3}$. Also, since eigenspaces are always B-invariant we have found a B-invariant complement to U.

[^0]: ${ }^{1}$ However, this is not required since the exponent of D is 4 . This means the largest number appearing in $\pi(D)$ is 4 . The only partition of 4 for which 4 appears is the partition $\pi(D): 4$. Thus, we necessarily must have that $\left(D^{3} f, D^{2} f, D f, f\right)$ is a Jordan basis, where f is any vector of height 4 .

