Math 110, Summer 2012 Short Homework 7

Due Monday 7/12, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the \mathbb{C}-vector space $\mathbb{C}_{3}[t]$ consisting of polynomials with \mathbb{C}-coefficients that have degree at most 3 . We have $\operatorname{dim}_{\mathbb{C}} \mathbb{C}_{3}[t]=4$. Consider the \mathbb{C}-linear endomorphism

$$
D: \mathbb{C}_{3}[t] \rightarrow \mathbb{C}_{3}[t] ; f \mapsto \frac{d f}{d t}
$$

a) Show that D is a nilpotent endomorphism and determine the exponent of $D, \eta(D)$.
b) For each $k, 0 \leq k \leq \eta(D)$, determine

$$
H_{k}=\left\{f \in \mathbb{C}_{3}[t] \mid \operatorname{ht}(f) \leq k\right\},
$$

and determine $\operatorname{dim} H_{k}=m_{k}$.
c) Recall the algorithm from Section 2.3 used to determine a basis of V, given a nilpotent endomorphism $g \in \operatorname{End}_{\mathbb{C}}(V)$. Using this algorithm find an ordered basis \mathcal{B} of $\mathbb{C}_{3}[t]$ such that $[D]_{\mathcal{B}}$ is block diagonal matrix, each block being a 0-Jordan block.
(Hint: there is only one 0-Jordan block.)
2. Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{C})
$$

and consider the endomorphism

$$
R_{A}: \operatorname{Mat}_{2}(\mathbb{C}) \rightarrow \operatorname{Mat}_{2}(\mathbb{C}) ; B \mapsto B A
$$

a) Show that R_{A} is a nilpotent endomorphism and determine the exponent of $R_{A}, \eta\left(R_{A}\right)$.
b) For each $k, 0 \leq k \leq \eta\left(R_{A}\right)$, determine

$$
H_{k}=\left\{B \in \operatorname{Mat}_{2}(\mathbb{C}) \mid \operatorname{ht}(B) \leq k\right\}
$$

and determine $\operatorname{dim} H_{k}=m_{k}$.
c) As in $1 c$) above, determine an ordered basis $\mathcal{B} \subset \operatorname{Mat}_{2}(\mathbb{C})$ such that $\left[R_{A}\right]_{\mathcal{B}}$ is a block diagonal matrix, each block being a 0-Jordan block.
(Hint: there is more than one 0-Jordan block in this case.)

Proofs

3. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, where V is a finite dimensional \mathbb{C}-vector space. Denote the eigenvalues of f by $\lambda_{1}, \ldots, \lambda_{k}$. Prove: f is diagonalisable if and only if, for every i, the algebraic multiplicity of λ_{i} is equal to the geometric multiplicity of λ_{i}.
(Looking at Proposition 2.1.14 and its proof may help here.)
4. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, where $\operatorname{dim} V=n$, and suppose that there is an ordered basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of V such that

$$
[f]_{\mathcal{B}}=\left[\begin{array}{cc}
A & B \\
0_{n-k, k} & C
\end{array}\right]
$$

Prove that $U=\operatorname{span}_{\mathbb{C}}\left\{b_{1}, \ldots, b_{k}\right\}$ is f-invariant.

