Math 110, Summer 2012 Short Homework 7

Due Monday 7/12, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the \mathbb{C} -vector space $\mathbb{C}_3[t]$ consisting of polynomials with \mathbb{C} -coefficients that have degree at most 3. We have dim_{\mathbb{C}} $\mathbb{C}_3[t] = 4$. Consider the \mathbb{C} -linear endomorphism

$$D: \mathbb{C}_3[t] \to \mathbb{C}_3[t]; f \mapsto \frac{df}{dt}.$$

- a) Show that D is a nilpotent endomorphism and determine the exponent of D, $\eta(D)$.
- b) For each k, $0 \le k \le \eta(D)$, determine

$$H_k = \{f \in \mathbb{C}_3[t] \mid \mathsf{ht}(f) \leq k\},\$$

and determine dim $H_k = m_k$.

- c) Recall the algorithm from Section 2.3 used to determine a basis of V, given a nilpotent endomorphism g ∈ End_ℂ(V). Using this algorithm find an ordered basis B of ℂ₃[t] such that [D]_B is block diagonal matrix, each block being a 0-Jordan block.
 - (Hint: there is only one 0-Jordan block.)

2. Let

$$A = egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix} \in \mathit{Mat}_2(\mathbb{C}),$$

and consider the endomorphism

$$R_A: Mat_2(\mathbb{C}) \rightarrow Mat_2(\mathbb{C}); B \mapsto BA.$$

- a) Show that R_A is a nilpotent endomorphism and determine the exponent of R_A , $\eta(R_A)$.
- b) For each k, $0 \le k \le \eta(R_A)$, determine

$$H_k = \{B \in Mat_2(\mathbb{C}) \mid ht(B) \leq k\},\$$

and determine dim $H_k = m_k$.

- c) As in 1*c*) above, determine an ordered basis $\mathcal{B} \subset Mat_2(\mathbb{C})$ such that $[R_A]_{\mathcal{B}}$ is a block diagonal matrix, each block being a 0-Jordan block.
 - (Hint: there is more than one 0-Jordan block in this case.)

Proofs

3. Let $f \in \text{End}_{\mathbb{C}}(V)$, where V is a finite dimensional \mathbb{C} -vector space. Denote the eigenvalues of f by $\lambda_1, \ldots, \lambda_k$. Prove: f is diagonalisable if and only if, for every i, the algebraic multiplicity of λ_i is equal to the geometric multiplicity of λ_i .

(Looking at Proposition 2.1.14 and its proof may help here.)

4. Let $f \in \text{End}_{\mathbb{C}}(V)$, where dim V = n, and suppose that there is an ordered basis $\mathcal{B} = (b_1, ..., b_n)$ of V such that

$$[f]_{\mathcal{B}} = \begin{bmatrix} A & B \\ 0_{n-k,k} & C \end{bmatrix}.$$

Prove that $U = \operatorname{span}_{\mathbb{C}} \{ b_1, \dots, b_k \}$ is *f*-invariant.