Math 110, Summer 2012 Short Homework 6 (SOME) SOLUTIONS

Due Monday 7/9, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-2 & -1 & -2 \\
1 & 1 & 2
\end{array}\right]
$$

Determine $\chi_{A}(\lambda)$ and give the eigenvalues of A - there are exactly two distinct eigenvalues, λ_{1}, λ_{2}. What is the algebraic multiplicity of each eigenvalue?
Determine a basis of $E_{\lambda_{1}}, E_{\lambda_{2}}$, the eigenspaces of A. What is the geometric multiplicity of each eigenvalue? Explain why A is diagonalisable. Give an invertible matrix P such that

$$
P^{-1} A P=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{1} & \\
& & \lambda_{2}
\end{array}\right]
$$

Solution: We have

$$
\operatorname{det}\left(A-\lambda I_{3}\right)=\chi_{A}(\lambda)=(1-\lambda)^{2}(2-\lambda)
$$

so that the eigenvalues are $\lambda_{1}=1, \lambda_{2}=2$ and with algebraic multiplicity 2 (resp. 1).
By row reducing $A-\lambda_{i} l_{3}$, for $i=1$, 2 , we see that

$$
E_{1}=\operatorname{span}_{\mathbb{C}}\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\}, \quad E_{2}=\operatorname{span}_{\mathbb{C}}\left\{\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]\right\}
$$

And that these spanning sets are linearly independent, hence must form a basis of each eigenspace. We see that the geometric multiplicity of 1 is 2 ; the geometric multiplicity of 2 is 1 . Hence, by a result from class, since the geometric and algebraic multiplicities of each eigenvalue coincides we must have that A is diagonalisable.
If we set

$$
P=\left[\begin{array}{ccc}
1 & 1 & 2 \\
-1 & 0 & -2 \\
0 & -1 & 1
\end{array}\right]
$$

then

$$
P^{-1} A P=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 2
\end{array}\right]
$$

2. Consider the matrix

$$
B=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \in \operatorname{Mat}_{3}(\mathbb{C})
$$

Show that the subspace

$$
U=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{C}^{3} \right\rvert\, x_{1}+x_{2}+x_{3}=0\right\} \subset \mathbb{C}^{3}
$$

is B-invariant and that 1 is an eigenvalue of B. Show that $E_{1} \cap U=\left\{0_{\mathbb{C}^{3}}\right\}$. Find a B-invariant subspace $W \subset V$ such that

$$
V=W \oplus U
$$

Justify your answer.

Proofs

3. Let V be a finite dimensional \mathbb{C}-vector space, $f \in$ End $_{\mathbb{C}}$. Prove that 0 is an eigenvalue of f if and only if f is not injective.

Solution: Suppose that 0 is an eigenvalue of f. This means that $\operatorname{ker} f=\operatorname{ker}\left(f-0 . \mathrm{id}_{V}\right) \neq\left\{0_{v}\right\}$. Hence, f is not injective.

Conversely, if f is not injective the there is a nonzero vector $v \in \operatorname{ker} f$. Hence, we have that $f(v)=$ $0_{v}=0 \cdot v$, so that $\lambda=0$ is an eigenvalue of f.
4. Let $A \in \operatorname{Mat}_{5}(\mathbb{C})$. Suppose that rank $A=3$ and that A has three distinct nonzero eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{K}$. Prove that A is diagonalisable.
(You need to use the information given to try and determine what $\chi_{A}(\lambda)$ looks like so that you can try and use Proposition 2.1.14.)
Solution: Since rank $A=3$ then $\operatorname{dim} \operatorname{ker} T_{A}=2$, by the Rank Theorem. Hence, by the previous problem, we see that 0 is an eigenvalue of A with geometric multiplicity 2 . Moreover, since there are three distinct nonzero eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$, each must have geometric multiplicity at least 1 .

Hence, since we have

$$
E_{0}+E_{\lambda_{1}}+E_{\lambda_{2}}+E_{\lambda_{3}}=E_{0} \oplus E_{\lambda_{1}} \oplus E_{\lambda_{2}} \oplus E_{\lambda_{3}} \subset \mathbb{C}^{5}
$$

we see that

$$
5=\operatorname{dim} \mathbb{C}^{5} \geq \operatorname{dim} E_{0}+\operatorname{dim} E_{\lambda_{1}}+\operatorname{dim} E_{\lambda_{2}}+\operatorname{dim} E_{\lambda_{3}} \geq 2+1+1+1=5
$$

Therefore, we must have

$$
\mathbb{C}^{5}=E_{0} \oplus E_{\lambda_{1}} \oplus E_{\lambda_{2}} \oplus E_{\lambda_{3}}
$$

so that there exists a basis of \mathbb{C}^{5} consisting of eigenvectors of A. Hence, A is diagonalisable.
5. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ and $U \subset V$ an f-invariant subspace. of V. Prove:

- U is also $f^{k}=f \circ \cdots \circ f$-invariant.
- If U is also g-invariant, for some $g \in \operatorname{End}_{\mathbb{C}}(V)$, then U is $(f+g)$-invariant.
- If $\lambda \in \mathbb{C}$ then U is λf-invariant.
- Prove that $\operatorname{im} f, \operatorname{ker} f$ are f-invariant.

6. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, with V an n-dimensional \mathbb{C}-vector space. Suppose that $f^{2}=f \circ f=f$.

- Prove that $V=\operatorname{imf} \oplus \operatorname{ker} f$.
- Prove that the only eigenvalues of f are $\lambda=0,1$.
(If λ is any eigenvalue, determine a polynomial relation on λ that forces $\lambda=0,1$.)
- Deduce that $\chi_{f}(\lambda)=\lambda^{s}(1-\lambda)^{n-s}$, for some $1 \leq s<n$.
- Prove that $\operatorname{im} f=E_{1}$ is the 1-eigenspace of f and deduce that $f=p_{U}$, for $U=\operatorname{im} f$.
(Here p_{U} is the 'projection onto U morphism' discussed on p. 60 of the notes.)

Solution:

- By the Rank Theorem we see that

$$
\operatorname{dim} V=\operatorname{dimim} f+\operatorname{dim} \operatorname{ker} f .
$$

Hence, if we can show that $\operatorname{ker} f \cap \operatorname{im} f=\left\{0_{v}\right\}$ then we have that $\operatorname{ker} f+\operatorname{imf}=\operatorname{ker} f \oplus \operatorname{im} f$ and

$$
\operatorname{dim} \operatorname{ker} f \oplus \operatorname{im} f=\operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{im} f=\operatorname{dim} V
$$

so that $V=\operatorname{ker} f \oplus \operatorname{imf}$.
Now, let $x \in \operatorname{ker} f \cap \operatorname{imf}$. Then, $x=f(y)$ for some $y \in V$, and

$$
0_{V}=f(x)=f(f(y))=f(y)=x
$$

where we have used that $f^{2}=f$. Hence, $\operatorname{ker} f \cap \operatorname{im} f=\{0 v\}$.

- Let $\lambda \in \mathbb{C}$ be an eigenvalue of f. Then, if v is an eigenvector with associated eigenvalue λ then we have

$$
f(v)=\lambda v
$$

Hence,

$$
\lambda v=f(v)=f(f(v))=f(\lambda v)=\lambda f(v)=\lambda^{2} v
$$

Thus, we must have $\left(\lambda^{2}-\lambda\right) v=0_{v}$, so that $\lambda=\lambda^{2}$, since $v \neq 0_{v}$. This can only happen if λ is either 0 or 1 .

- Since the only possible eigenvalues of f are $\lambda=0,1$ the characteristic polynomial must take the form

$$
\chi_{f}(\lambda)=\lambda^{s}(1-\lambda)^{n-s}
$$

since $\operatorname{deg} \chi_{f}(\lambda)=n$.

- Let $v \in E_{1}$. Then, $f(v)=v$ so that $v \in \operatorname{imf}$. Conversely, let $x=f(y) \in \operatorname{imf}$; we are going to show that $x \in E_{1}$. Indeed,

$$
f(x)=f(f(y))=f(y)=x
$$

so that $x \in E_{1}$. Hence, we have just shown that $\operatorname{im} f=E_{1}$.
In order to deduce that last statement we need to show an equality of functions, that is, we must show that $f(v)=p_{U}(v)$, for every $v \in V$. Now, since $V=\operatorname{ker} f \oplus \operatorname{imf}$ then we have

$$
v=z+u, z \in \operatorname{ker} f, u \in \operatorname{im} f
$$

Then,

$$
f(v)=f(z+u)=f(z)+f(u)=0_{v}+f(u)=0_{v}+u
$$

where we have used that $f(u)=u$, since $\operatorname{im} f=E_{1}$. Hence, since

$$
p_{U}(v)=u
$$

we must have that $f(v)=p_{U}(v)$, for every $v \in V$.

