
Math 110, Summer 2012 Short Homework 6 (SOME) SOLUTIONS
Due Monday 7/9, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the matrix

A =

 3 2 2
−2 −1 −2
1 1 2

 .

Determine χA(λ) and give the eigenvalues of A - there are exactly two distinct eigenvalues, λ1,λ2. What
is the algebraic multiplicity of each eigenvalue?
Determine a basis of Eλ1 ,Eλ2 , the eigenspaces of A. What is the geometric multiplicity of each eigen-
value? Explain why A is diagonalisable. Give an invertible matrix P such that

P−1AP =

λ1 λ1
λ2

 .

Solution: We have
det(A− λI3) = χA(λ) = (1− λ)2(2− λ),

so that the eigenvalues are λ1 = 1,λ2 = 2 and with algebraic multiplicity 2 (resp. 1).

By row reducing A− λi I3, for i = 1, 2, we see that

E1 = spanC


 1
−1
0

 ,

 1
0
−1

 , E2 = spanC


 2
−2
1

 .

And that these spanning sets are linearly independent, hence must form a basis of each eigenspace. We
see that the geometric multiplicity of 1 is 2; the geometric multiplicity of 2 is 1. Hence, by a result from
class, since the geometric and algebraic multiplicities of each eigenvalue coincides we must have that A
is diagonalisable.

If we set

P =

 1 1 2
−1 0 −2
0 −1 1

 ,

then

P−1AP =

1
1

2

 .

2. Consider the matrix

B =

0 1 0
0 0 1
1 0 0

 ∈ Mat3(C).

Show that the subspace

U =


x1x2
x3

 ∈ C3 | x1 + x2 + x3 = 0

 ⊂ C3,

is B-invariant and that 1 is an eigenvalue of B. Show that E1∩U = {0C3}. Find a B-invariant subspace
W ⊂ V such that

V = W ⊕ U.

Justify your answer.

Proofs



3. Let V be a finite dimensional C-vector space, f ∈ EndC. Prove that 0 is an eigenvalue of f if and
only if f is not injective.

Solution: Suppose that 0 is an eigenvalue of f . This means that ker f = ker(f −0.idV ) 6= {0V }. Hence,
f is not injective.

Conversely, if f is not injective the there is a nonzero vector v ∈ ker f . Hence, we have that f (v) =
0V = 0 · v , so that λ = 0 is an eigenvalue of f .

4. Let A ∈ Mat5(C). Suppose that rankA = 3 and that A has three distinct nonzero eigenvalues
λ1,λ2,λ3 ∈ K. Prove that A is diagonalisable.

(You need to use the information given to try and determine what χA(λ) looks like so that you can try
and use Proposition 2.1.14. )

Solution: Since rankA = 3 then dim kerTA = 2, by the Rank Theorem. Hence, by the previous problem,
we see that 0 is an eigenvalue of A with geometric multiplicity 2. Moreover, since there are three distinct
nonzero eigenvalues λ1,λ2,λ3, each must have geometric multiplicity at least 1.

Hence, since we have

E0 + Eλ1 + Eλ2 + Eλ3 = E0 ⊕ Eλ1 ⊕ Eλ2 ⊕ Eλ3 ⊂ C5,

we see that

5 = dimC5 ≥ dimE0 + dimEλ1 + dimEλ2 + dimEλ3 ≥ 2 + 1 + 1 + 1 = 5.

Therefore, we must have
C5 = E0 ⊕ Eλ1 ⊕ Eλ2 ⊕ Eλ3 ,

so that there exists a basis of C5 consisting of eigenvectors of A. Hence, A is diagonalisable.

5. Let f ∈ EndC(V ) and U ⊂ V an f -invariant subspace. of V . Prove:

- U is also f k = f ◦ · · · ◦ f -invariant.

- If U is also g -invariant, for some g ∈ EndC(V ), then U is (f + g)-invariant.

- If λ ∈ C then U is λf -invariant.

- Prove that imf , ker f are f -invariant.

6. Let f ∈ EndC(V ), with V an n-dimensional C-vector space. Suppose that f 2 = f ◦ f = f .

- Prove that V = imf ⊕ ker f .

- Prove that the only eigenvalues of f are λ = 0, 1.

(If λ is any eigenvalue, determine a polynomial relation on λ that forces λ = 0, 1.)

- Deduce that χf (λ) = λs(1− λ)n−s , for some 1 ≤ s < n.

- Prove that imf = E1 is the 1-eigenspace of f and deduce that f = pU , for U = imf .

(Here pU is the ‘projection onto U morphism’ discussed on p. 60 of the notes.)

Solution:

- By the Rank Theorem we see that

dimV = dim imf + dim ker f .

Hence, if we can show that ker f ∩ imf = {0V } then we have that ker f + imf = ker f ⊕ imf and

dim ker f ⊕ imf = dim ker f + dim imf = dimV ,



so that V = ker f ⊕ imf .

Now, let x ∈ ker f ∩ imf . Then, x = f (y) for some y ∈ V , and

0V = f (x) = f (f (y)) = f (y) = x ,

where we have used that f 2 = f . Hence, ker f ∩ imf = {0V }.

- Let λ ∈ C be an eigenvalue of f . Then, if v is an eigenvector with associated eigenvalue λ then
we have

f (v) = λv .

Hence,
λv = f (v) = f (f (v)) = f (λv) = λf (v) = λ2v .

Thus, we must have (λ2 − λ)v = 0V , so that λ = λ2, since v 6= 0V . This can only happen if λ is
either 0 or 1.

- Since the only possible eigenvalues of f are λ = 0, 1 the characteristic polynomial must take the
form

χf (λ) = λs(1− λ)n−s ,

since degχf (λ) = n.

- Let v ∈ E1. Then, f (v) = v so that v ∈ imf . Conversely, let x = f (y) ∈ imf ; we are going to
show that x ∈ E1. Indeed,

f (x) = f (f (y)) = f (y) = x ,

so that x ∈ E1. Hence, we have just shown that imf = E1.

In order to deduce that last statement we need to show an equality of functions, that is, we must
show that f (v) = pU(v), for every v ∈ V . Now, since V = ker f ⊕ imf then we have

v = z + u, z ∈ ker f , u ∈ imf .

Then,
f (v) = f (z + u) = f (z) + f (u) = 0V + f (u) = 0V + u,

where we have used that f (u) = u, since imf = E1. Hence, since

pU(v) = u,

we must have that f (v) = pU(v), for every v ∈ V .


