Math 110, Summer 2012 Short Homework 6

Due Monday 7/9, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-2 & -1 & -2 \\
1 & 1 & 2
\end{array}\right]
$$

Determine $\chi_{A}(\lambda)$ and give the eigenvalues of A - there are exactly two distinct eigenvalues, λ_{1}, λ_{2}. What is the algebraic multiplicity of each eigenvalue?
Determine a basis of $E_{\lambda_{1}}, E_{\lambda_{2}}$, the eigenspaces of A. What is the geometric multiplicity of each eigenvalue? Explain why A is diagonalisable. Give an invertible matrix P such that

$$
P^{-1} A P=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{1} & \\
& & \lambda_{2}
\end{array}\right] .
$$

2. Consider the matrix

$$
B=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \in \operatorname{Mat}_{3}(\mathbb{C})
$$

Show that the subspace

$$
U=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{C}^{3} \right\rvert\, x_{1}+x_{2}+x_{3}=0\right\} \subset \mathbb{C}^{3}
$$

is B-invariant and that 1 is an eigenvalue of B. Show that $E_{1} \cap U=\left\{0_{\mathbb{C}^{3}}\right\}$. Find a B-invariant subspace $W \subset V$ such that

$$
V=W \oplus U
$$

Justify your answer.

Proofs

3. Let V be a finite dimensional \mathbb{C}-vector space, $f \in$ End $_{\mathbb{C}}$. Prove that 0 is an eigenvalue of f if and only if f is not injective.
4. Let $A \in \operatorname{Mat}_{5}(\mathbb{C})$. Suppose that $\operatorname{rank} A=3$ and that A has three distinct nonzero eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{K}$. Prove that A is diagonalisable.
(You need to use the information given to try and determine what $\chi_{A}(\lambda)$ looks like so that you can try and use Proposition 2.1.14.)
5. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ and $U \subset V$ an f-invariant subspace. of V. Prove:

- U is also $f^{k}=f \circ \cdots \circ f$-invariant.
- If U is also g-invariant, for some $g \in \operatorname{End}_{\mathbb{C}}(V)$, then U is $(f+g)$-invariant.
- If $\lambda \in \mathbb{C}$ then U is λf-invariant.
- Prove that $\operatorname{im} f, \operatorname{ker} f$ are f-invariant.

6. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, with V an n-dimensional \mathbb{C}-vector space. Suppose that $f^{2}=f \circ f=f$.

- Prove that $V=\operatorname{imf} \oplus \operatorname{ker} f$.
- Prove that the only eigenvalues of f are $\lambda=0,1$.
(If λ is any eigenvalue, determine a polynomial relation on λ that forces $\lambda=0,1$.)
- Deduce that $\chi_{f}(\lambda)=\lambda^{s}(1-\lambda)^{n-s}$, for some $1 \leq s<n$.
- Prove that $\operatorname{im} f=E_{1}$ is the 1-eigenspace of f and deduce that $f=p_{U}$, for $U=\operatorname{im} f$.
(Here p_{U} is the 'projection onto U morphism' discussed on p. 60 of the notes.)

