Math 110, Summer 2012 Short Homework 5 (SOME) SOLUTIONS

Due Thursday 7/5, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the bases

$$
\mathcal{S}^{(2)}=\left(e_{1}, e_{2}\right) \subset \mathbb{Q}^{2}, \mathcal{C}=\left(f_{1}, f_{2}, f_{3}\right) \subset \mathbb{Q}^{\{1,2,3\}},
$$

where

$$
f_{1}(1)=1, f_{1}(2)=0, f_{1}(3)=-1 ; f_{2}(1)=0, f_{2}(2)=-1, f_{2}(3)=-1 ; f_{3}(1)=1, f_{3}(2)=2, f_{3}(3)=0
$$

Consider the following linear morphism

$$
\alpha: \mathbb{Q}^{2} \rightarrow \mathbb{Q}^{\{1,2,3\}} ;\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \mapsto \alpha\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=f:\left\{\begin{array}{l}
1 \mapsto x_{1} \\
2 \mapsto x_{2} \\
3 \mapsto x_{1}+x_{2}
\end{array}\right.
$$

Determine $[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{C}}$. Is α injective? Explain your answer. What is $[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{B}}$, where $B=\left\{e_{i} \mid i=1,2,3\right\} \subset$ $\mathbb{Q}^{\{1,2,3\}}$?
(To determine $[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{C}}$ you will need to find the \mathcal{C}-coordinates of $\alpha\left(e_{i}\right)$ - to do this it may help to use the change of coordinate matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}^{-1}$.)
Solution: Using the properties of associating matrices to morphisms we have

$$
[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{C}}=\left[\mathrm{id}_{\mathbb{Q}^{(1,2,3\}}} \circ \alpha\right]_{\mathcal{S}^{(2)}}^{\mathcal{C}}=\left[\mathrm{id}_{\mathbb{Q}^{\{1,2,3\}}}\right]_{\mathcal{B}}^{\mathcal{C}}[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{B}}=P_{\mathcal{C} \leftarrow \mathcal{B}}[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{B}} .
$$

Then, we have

$$
[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{B}}=\left[\left[\alpha\left(e_{1}\right)\right]_{\mathcal{B}}\left[\alpha\left(e_{2}\right)\right]_{\mathcal{B}}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right],
$$

and

$$
P_{\mathcal{B} \leftarrow \mathcal{C}}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & 2 \\
-1 & -1 & 0
\end{array}\right]
$$

Then, we find that

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}^{-1}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-2 & 1 & -2 \\
-1 & 1 & -1
\end{array}\right]
$$

Hence, we have

$$
[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{B}}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-2 & 1 & -2 \\
-1 & 1 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
-4 & -1 \\
-2 & 0
\end{array}\right]
$$

We see that α is injective since there is a pivot in every column of $[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{B}}\left(\operatorname{or}[\alpha]_{\mathcal{B}}^{\mathcal{C}}\right.$, either will do).
2. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 1
\end{array}\right] \in \operatorname{Mat}_{2,3}(\mathbb{Q})
$$

Determine the rank of A, rank $A=r$, and find matrices $P \in \mathrm{GL}_{3}(\mathbb{Q}), Q \in \mathrm{GL}_{2}(\mathbb{Q})$ such that

$$
Q^{-1} A P=\left[\begin{array}{cc}
I_{r} & 0_{r, 3-r} \\
0_{2-r, r} & 0_{2-r, 3-r}
\end{array}\right]
$$

(Of course, if $r=2$ then we do not have the bottom row. You need to replicate your proof of Q4.)

Solution: We have rank $A=\operatorname{dim} \operatorname{im} T_{A}$ and since

$$
A e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], A e_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \in \operatorname{im} T_{A}
$$

and these vectors are linearly independent, we must have im $T_{A}=\mathbb{Q}^{2}$ (we have just shown that im T_{A} is at least 2 dimensional, since it's a subspace of a 2 dimensional space it must be the whole space). Hence, rank $A=2$.

There are many ways to proceed to find P, Q - you can use elementary matrices or the following procedure: we find a basis for $\operatorname{ker} \mathbf{T}_{A} \subset \mathbb{Q}^{3}$. By row-reducing A we see that any solution \underline{x} such that $A \underline{x}=\underline{0}$ must take the form

$$
\underline{x}=\left[\begin{array}{c}
-3 c \\
-c \\
c
\end{array}\right], \quad \text { for some } c \in \mathbb{Q}
$$

Now, extend the basis

$$
\mathcal{B}=\left(\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]\right.
$$

of $\operatorname{ker} T_{A}$ to a basis \mathcal{B} of \mathbb{Q}^{3}. For example, we can extend to

$$
\mathcal{B}=\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]\right)
$$

Then,

$$
\mathcal{C}^{\prime}=\left(A\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], A\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)
$$

is a basis of $\operatorname{im} T_{A}$. Since $\operatorname{im} T_{A}=\mathbb{Q}^{2}$ we don't need to extend to a basis of \mathbb{Q}^{2} so that we can take

$$
Q=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right], P=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

and we have

$$
Q^{-1} A P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

3. Let $\mathcal{S}^{(3)}=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of \mathbb{Q}^{3}. There are six possible orderings of $\mathcal{S}^{(3)}$: write them all down to obtain six different ordered bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{6}$ and so that $\mathcal{B}_{1}=\left(e_{1}, e_{2}, e_{3}\right)$. Write down the change of coordinates matrices $P_{\mathcal{B}_{i} \leftarrow \mathcal{B}_{1}}$, for $i=1, \ldots, 6$.

Proofs

4. Let $f, g \in \operatorname{Hom}_{\mathbb{K}}(V, W), \mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\} \subset V$ a basis of V. Prove that if $f\left(b_{i}\right)=g\left(b_{i}\right)$, for each $i=1, \ldots, n$, then $f=g$.
(In order to show that two functions $f, g: V \rightarrow W$ are equal, you must show that $f(v)=g(v)$, for every $v \in V$. Therefore, this questions tells us that in order to show two linear morphisms are equal, it suffices to check that they are equal on a basis.)
Solution: Let $v \in V$. Then, since \mathcal{B} is a basis of V we have

$$
v=\lambda_{1} b_{1}+\ldots+\lambda_{n} b_{n}
$$

so that

$$
\begin{aligned}
f(v) & =f\left(\lambda_{1} b_{1}+\ldots+\lambda_{n} b_{n}\right) \\
& =\lambda_{1} f\left(b_{1}\right)+\ldots+\lambda_{n} f\left(b_{n}\right) \\
& =\lambda_{1} g\left(b_{1}\right)+\ldots+\lambda_{n} g\left(b_{n}\right) \\
& =g\left(\lambda_{1} b_{1}+\ldots+\lambda_{n} b_{n}\right)=g(v) .
\end{aligned}
$$

Hence, we see that $f=g$.
5. Let $A \in \operatorname{Mat}_{m, n}(\mathbb{K})$ be such that rank $A=r$. Prove that there exists $P \in \mathrm{GL}_{n}(\mathbb{K}), Q \in \mathrm{GL}_{m}(\mathbb{K})$ such that

$$
Q^{-1} A P=\left[\begin{array}{cc}
I_{r} & 0_{r, n-r} \\
0_{m-r, r} & 0_{m-r, n-r}
\end{array}\right] .
$$

(Replicate the proof of Theorem 1.7.14 for $f=T_{A}$. How do P, Q arise?)
Solution: Take a basis $\mathcal{B}^{\prime}=\left(b_{r+1}, \ldots, b_{n}\right)$ of $\operatorname{ker} T_{A}$ and extend to a basis \mathcal{B} of \mathbb{K}^{n}, say

$$
\mathcal{B}=\left(b_{1}, \ldots, b_{r}, b_{r+1}, \ldots, b_{n}\right)
$$

Then, as in the proof of the Rank Theorem we see that

$$
\mathcal{C}^{\prime}=\left(A b_{1}, \ldots, A b_{r}\right)
$$

is a basis of $\operatorname{im} T_{A}$. Now, extend this to a basis

$$
\mathcal{C}=\left(A b_{1}, \ldots, A b_{r}, c_{r+1}, \ldots, c_{m}\right)
$$

of \mathbb{K}^{m}. Now, let

$$
P=\left[\begin{array}{lll}
b_{1} & \cdots & b_{n}
\end{array}\right], Q=\left[\begin{array}{lll}
A b_{1} & \cdots & c_{m}
\end{array}\right] .
$$

The result follows by relating that matrix of T_{A} with respect to \mathcal{B} and \mathcal{C} and the matrix of T_{A} with respect to the standard bases.

