
Math 110, Summer 2012 Short Homework 5 (SOME) SOLUTIONS
Due Thursday 7/5, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the bases
S(2) = (e1, e2) ⊂ Q2, C = (f1, f2, f3) ⊂ Q{1,2,3},

where

f1(1) = 1, f1(2) = 0, f1(3) = −1; f2(1) = 0, f2(2) = −1, f2(3) = −1; f3(1) = 1, f3(2) = 2, f3(3) = 0.

Consider the following linear morphism

α : Q2 → Q{1,2,3} ;

[
x1
x2

]
7→ α

([
x1
x2

])
= f :


1 7→ x1

2 7→ x2

3 7→ x1 + x2

.

Determine [α]CS(2) . Is α injective? Explain your answer. What is [α]BS(2) , where B = {ei | i = 1, 2, 3} ⊂
Q{1,2,3}?

(To determine [α]CS(2) you will need to find the C-coordinates of α(ei ) - to do this it may help to use the

change of coordinate matrix PC←B = P−1B←C .)

Solution: Using the properties of associating matrices to morphisms we have

[α]CS(2) = [idQ{1,2,3} ◦ α]CS(2) = [id
{1,2,3}
Q ]CB[α]BS(2) = PC←B[α]BS(2) .

Then, we have

[α]BS(2) = [[α(e1)]B[α(e2)]B] =

1 0
0 1
1 1

 ,

and

PB←C =

 1 0 1
0 −1 2
−1 −1 0

 .

Then, we find that

PC←B = P−1B←C =

 2 −1 1
−2 1 −2
−1 1 −1

 .

Hence, we have

[α]CS(2) = PC←B[α]BS(2) =

 2 −1 1
−2 1 −2
−1 1 −1

1 0
0 1
1 1

 =

 3 0
−4 −1
−2 0

 .

We see that α is injective since there is a pivot in every column of [α]BS(2) (or [α]CB, either will do).

2. Consider the matrix

A =

[
1 −1 2
0 1 1

]
∈ Mat2,3(Q).

Determine the rank of A, rank A = r , and find matrices P ∈ GL3(Q), Q ∈ GL2(Q) such that

Q−1AP =

[
Ir 0r ,3−r

02−r ,r 02−r ,3−r

]
.

(Of course, if r = 2 then we do not have the bottom row. You need to replicate your proof of Q4.)



Solution: We have rank A = dim imTA and since

Ae1 =

[
1
0

]
, Ae2 =

[
−1
1

]
∈ imTA,

and these vectors are linearly independent, we must have imTA = Q2 (we have just shown that imTA

is at least 2 dimensional, since it’s a subspace of a 2 dimensional space it must be the whole space).
Hence, rank A = 2.

There are many ways to proceed to find P, Q - you can use elementary matrices or the following
procedure: we find a basis for kerTA ⊂ Q3. By row-reducing A we see that any solution x such that
Ax = 0 must take the form

x =

−3c
−c
c

 , for some c ∈ Q.

Now, extend the basis

B = (

−3
−1
1

 ,

of ker TA to a basis B of Q3. For example, we can extend to

B =

1
0
0

 ,

0
1
0

 ,

−3
−1
1

 .

Then,

C′ =

A

1
0
0

 , A

0
1
0

 =

([
1
0

]
,

[
−1
1

])
,

is a basis of imTA. Since imTA = Q2 we don’t need to extend to a basis of Q2 so that we can take

Q =

[
1 −1
0 1

]
, P =

1 0 −3
0 1 −1
0 0 1


and we have

Q−1AP =

[
1 0 0
0 1 0

]
.

3. Let S(3) = {e1, e2, e3} be the standard basis of Q3. There are six possible orderings of S(3): write
them all down to obtain six different ordered bases B1, ... ,B6 and so that B1 = (e1, e2, e3). Write down
the change of coordinates matrices PBi←B1 , for i = 1, ... , 6.

Proofs

4. Let f , g ∈ HomK(V , W ), B = {b1, ... , bn} ⊂ V a basis of V . Prove that if f (bi ) = g(bi ), for each
i = 1, ... , n, then f = g .

(In order to show that two functions f , g : V → W are equal, you must show that f (v) = g(v), for
every v ∈ V . Therefore, this questions tells us that in order to show two linear morphisms are equal, it
suffices to check that they are equal on a basis.)

Solution: Let v ∈ V . Then, since B is a basis of V we have

v = λ1b1 + ... + λnbn,



so that

f (v) = f (λ1b1 + ... + λnbn)

= λ1f (b1) + ... + λnf (bn)

= λ1g(b1) + ... + λng(bn)

= g(λ1b1 + ... + λnbn) = g(v).

Hence, we see that f = g .

5. Let A ∈ Matm,n(K) be such that rank A = r . Prove that there exists P ∈ GLn(K), Q ∈ GLm(K)
such that

Q−1AP =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
.

(Replicate the proof of Theorem 1.7.14 for f = TA. How do P, Q arise? )

Solution: Take a basis B′ = (br+1, ... , bn) of ker TA and extend to a basis B of Kn, say

B = (b1, ... , br , br+1, ... , bn).

Then, as in the proof of the Rank Theorem we see that

C′ = (Ab1, ... , Abr ),

is a basis of imTA. Now, extend this to a basis

C = (Ab1, ... , Abr , cr+1, ... , cm),

of Km. Now, let
P = [b1 · · · bn], Q = [Ab1 · · · cm].

The result follows by relating that matrix of TA with respect to B and C and the matrix of TA with
respect to the standard bases.


