Math 110, Summer 2012 Short Homework 5

Due Thursday 7/5, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Consider the bases

$$
\mathcal{S}^{(2)}=\left(e_{1}, e_{2}\right) \subset \mathbb{Q}^{2}, \mathcal{C}=\left(f_{1}, f_{2}, f_{3}\right) \subset \mathbb{Q}^{\{1,2,3\}}
$$

where

$$
f_{1}(1)=1, f_{1}(2)=0, f_{1}(3)=-1 ; f_{2}(1)=0, f_{2}(2)=-1, f_{2}(3)=-1 ; f_{3}(1)=1, f_{3}(2)=2, f_{3}(3)=0
$$

Consider the following linear morphism

$$
\alpha: \mathbb{Q}^{2} \rightarrow \mathbb{Q}^{\{1,2,3\}} ;\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \mapsto \alpha\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=f:\left\{\begin{array}{l}
1 \mapsto x_{1} \\
2 \mapsto x_{2} \\
3 \mapsto x_{1}+x_{2}
\end{array} .\right.
$$

Determine $[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{C}}$. Is α injective? Explain your answer. What is $[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{B}}$, where $B=\left\{e_{i} \mid i=1,2,3\right\} \subset$ $\mathbb{Q}^{\{1,2,3\}}$?
(To determine $[\alpha]_{\mathcal{S}^{(2)}}^{\mathcal{C}}$ you will need to find the \mathcal{C}-coordinates of $\alpha\left(e_{i}\right)$ - to do this it may help to use the change of coordinate matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}^{-1}$.)
2. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 1
\end{array}\right] \in \operatorname{Mat}_{2,3}(\mathbb{Q})
$$

Determine the rank of A, rank $A=r$, and find matrices $P \in \mathrm{GL}_{3}(\mathbb{Q}), Q \in \mathrm{GL}_{2}(\mathbb{Q})$ such that

$$
Q^{-1} A P=\left[\begin{array}{cc}
I_{r} & 0_{r, 3-r} \\
0_{2-r, r} & 0_{2-r, 3-r}
\end{array}\right] .
$$

(Of course, if $r=2$ then we do not have the bottom row. You need to replicate your proof of Q4.)
3. Let $\mathcal{S}^{(3)}=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of \mathbb{Q}^{3}. There are six possible orderings of $\mathcal{S}^{(3)}$: write them all down to obtain six different ordered bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{6}$ and so that $\mathcal{B}_{1}=\left(e_{1}, e_{2}, e_{3}\right)$. Write down the change of coordinates matrices $P_{\mathcal{B}_{i} \leftarrow \mathcal{B}_{1}}$, for $i=1, \ldots, 6$.

Proofs

4. Let $f, g \in \operatorname{Hom}_{\mathbb{K}}(V, W), \mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\} \subset V$ a basis of V. Prove that if $f\left(b_{i}\right)=g\left(b_{i}\right)$, for each $i=1, \ldots, n$, then $f=g$.
(In order to show that two functions $f, g: V \rightarrow W$ are equal, you must show that $f(v)=g(v)$, for every $v \in V$. Therefore, this questions tells us that in order to show two linear morphisms are equal, it suffices to check that they are equal on a basis.)
5. Let $A \in \operatorname{Mat}_{m, n}(\mathbb{K})$ be such that rank $A=r$. Prove that there exists $P \in \mathrm{GL}_{n}(\mathbb{K}), Q \in \mathrm{GL}_{m}(\mathbb{K})$ such that

$$
Q^{-1} A P=\left[\begin{array}{cc}
I_{r} & 0_{r, n-r} \\
0_{m-r, r} & 0_{m-r, n-r}
\end{array}\right]
$$

(Replicate the proof of Theorem 1.7.14 for $f=T_{A}$. How do P, Q arise?)

