Math 110, Summer 2012 Short Homework 4 (SOME) SOLUTIONS

Due Monday 7/2, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Which of the following subsets are bases of the vector space V ? Explain your answer.

$$
\begin{gathered}
A=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \subset \mathbb{R}^{3}, \\
B=\left\{\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
2 & 2 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
-2 & 2
\end{array}\right]\right\} \subset \operatorname{Mat}_{2}(\mathbb{Q}) \\
C=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\} \subset U=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{C}^{3} \right\rvert\, x_{1}+x_{2}+x_{3}=0\right\} .
\end{gathered}
$$

Solution:

- Yes: A is a linearly independent subset of a 3 dimensional vector space with 3 vectors in it.
- No: since $\operatorname{Mat}_{2}(\mathbb{Q})$ is 4 dimensional and B contains only three vectors it is not possible for B to be a basis (Basis Theorem).
- No: U is a 2 dimensional vector space $\left(U=\operatorname{ker} f\right.$, where : $\mathbb{C}^{3} \rightarrow \mathbb{C}$ is the 'sum all entries' morphism; now use Rank Theorem) and C has three vectors in it, so can't be a basis.

2. Consider the linear morphism

$$
\operatorname{tr}: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ; A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \mapsto a_{11}+a_{12}
$$

Determine an ordered basis \mathcal{B} of the subspace $U=$ ker $\operatorname{tr} \subset \operatorname{Mat}_{2}(\mathbb{R})$, and an ordered basis $\mathcal{C} \subset \mathbb{R}$ of \mathbb{R} making sure to explain why you know that the ordered sets you give are bases.
Using the ordered bases \mathcal{B} and \mathcal{C} you have found, determine the matrix $[\operatorname{tr}]_{\mathcal{B}}^{\mathcal{C}}$ of tr relative to \mathcal{B} and \mathbb{C}.
Solution: An ordered basis of U is

$$
\mathcal{B}=\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)
$$

and an ordered basis of \mathbb{R} is $\mathcal{C}=(1)$. Then, since for any $v \in \operatorname{ker} \operatorname{tr}$ we have $\operatorname{tr}(v)=0$, we must have that $\operatorname{tr}(b)=0$, for each $b \in \mathcal{B}$. Hence, the matrix of tr with respect to \mathcal{B} and \mathcal{C} is

$$
[\operatorname{tr}]_{\mathcal{B}}^{\mathcal{C}}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] .
$$

3. Consider the vector subspace (you DO NOT have to show this)

$$
S_{n}=\left\{A \in \operatorname{Mat}_{n}(\mathbb{Q}) \mid A=A^{t}\right\} \subset \operatorname{Mat}_{n}(\mathbb{Q})
$$

where A^{t} is the transpose of A (so that if $A=\left[a_{i j}\right]$ then $A^{t}=\left[a_{j i}\right]$). S_{n} consists of all symmetric $n \times n$ matrices with \mathbb{Q}-entries.
a) Determine a basis \mathcal{B} of S_{n} and show that the subset you obtain is a basis.
b) Find a closed formula for the dimension of S_{n}.
(It might help to consider what happens when $n=2,3,4$ first)

Consider the subspace

$$
A_{n}=\left\{A \in \operatorname{Mat}_{n}(\mathbb{Q}) \mid A=-A^{t}\right\} \subset \operatorname{Mat}_{n}(\mathbb{Q})
$$

A_{n} consists of all antisymmetric $n \times n$ matrices eith \mathbb{Q}-entries.
c) Determine a basis \mathcal{C} of A_{n} and show that the subset you obtain is a basis.
d) Find a closed formula for the dimension of A_{n}.
e) Show that $S_{n} \cap A_{n}=\left\{0_{n}\right\}$ and deduce that $\operatorname{Mat}_{n}(\mathbb{Q})=A_{n} \oplus S_{n}$.
f) You have just shown that $\mathcal{D}=\mathcal{B} \cup \mathcal{C}$ is a basis of $\operatorname{Mat}_{n}(\mathbb{Q})$. Find the \mathcal{D}-coordinates of the matrix

$$
P=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 2 \\
-1 & -2 & 1
\end{array}\right] \in \operatorname{Mat}_{3}(\mathbb{Q})
$$

Solution:

a) If $A=\left[a_{i j}\right] \in S_{n}$ then we must have $a_{i j}=a_{j i}$, for every i, j. Moreover, any $A=\left[a_{i j}\right] \in \operatorname{Mat}_{n}(\mathbb{Q})$ such that $a_{i j}=a_{j i}$ is a symmetric matrix. Then, the following is an ordered basis

$$
\mathcal{B}=\left(e_{11}, e_{22}, \ldots, e_{n n}, e_{j i} ; e_{i j}+e_{j i} \mid i<j\right):
$$

it is easy to see that this set is linearly independent and if $A=\left[a_{i j}\right] \in S_{n}$, so that $a_{i j}=a_{j i}$, then

$$
A=a_{11} e_{11}+\ldots+a_{n n} e_{n n}+\sum_{i<j} a_{i j}\left(e_{i j}+e_{j i}\right)
$$

so that $\operatorname{span}_{\mathbb{Q}} \mathcal{B}=S_{n}$. Hence, \mathcal{B} is a basis.
b) We need to count the vectors in \mathcal{B} : we have n vectors coming from $e_{11}, \ldots, e_{n n}$ and are left with counting the size of the set $\left\{e_{i j}+e_{j i} \mid 1 \leq i<j \leq n\right\}$. For $i=1$ there are $n-1$ possibilities of j so that $i<j \leq n$, for $i=2$ there are $n-2$ possibilities for $i<j \leq n$, for $i=3$ there are $n-3$ possibilities for $i<j \leq n$ etc. So, for $i=k$ there are $n-k$ possibilities for $i<j \leq n$. Hence, we have an extra $(n-1)+(n-2)+\ldots+2+1$ vectors. Thus,

$$
\operatorname{dim}_{\mathbb{Q}} S_{n}=1+2+3+\ldots+(n-2)+(n-1)+n=\frac{1}{2} n(n+1)
$$

c) If $A=\left[a_{i j}\right] \in A_{n}$ then $a_{i j}=-a_{j i}$; in particular, we must have $a_{i i}=0$, for $i=1, \ldots, n$. Now, a basis is

$$
\mathcal{C}=\left(e_{i j}-e_{j i} \mid 1 \leq i<j \leq n\right)
$$

as you can check that \mathcal{C} is linearly independent and spans $\operatorname{Mat}_{2}(\mathbb{Q})$.
d) Counting as before we see that

$$
\operatorname{dim} A_{n}=1+2+3+\ldots+(n-2)+(n-1)=\frac{1}{2} n(n-1)
$$

(There are ne diagonal matrices this time.)
e) Let $A=\left[a_{i j}\right] \in S_{n} \cap A_{n}$. Then, we must have that $a_{i j}=a_{j i}$, for every i, j, and $a_{i j}=-a_{j i}$, for every i, j. Hence, we must have

$$
a_{i j}=a_{j i}=-a_{i j}, \quad \text { for every } i, j,
$$

so that $a_{i j}=0$, for every i, j, and $A=0_{n}$. So, we know that sum $A_{n}+S_{n}=A_{n} \oplus S_{n}$ is direct. Now, use the dimension formula

$$
\operatorname{dim}\left(A_{n}+S_{n}\right)=\operatorname{dim} A_{n}+\operatorname{dim} S_{n}-\operatorname{dim} A_{n} \cap S_{n}=n^{2}
$$

So, we must have $\operatorname{Mat}_{n}(\mathbb{Q})=A_{n}+S_{n}=A_{n} \oplus S_{n}$, since $\operatorname{dim} \operatorname{Mat}_{n}(\mathbb{Q})=n^{2}$.
f) Denote

$$
\mathcal{D}=\left(e_{11}, e_{22}, e_{33}, e_{12}+e_{21}, e_{13}+e_{31}, e_{23}+e_{32}, e_{12}-e_{21}, e_{13}-e_{31}, e_{23}-e_{32}\right)
$$

Then, if $\mathcal{S}=\left(e_{11}, e_{12}, e_{13}, e_{21}, e_{22}, e_{23}, e_{31}, e_{32}, e_{33}\right)$ is the standard basis then we have

$$
\begin{aligned}
& P_{\mathcal{S} \leftarrow \mathcal{D}}=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& \Longrightarrow P_{\mathcal{D} \leftarrow \mathcal{S}}=P_{\mathcal{S} \leftarrow \mathcal{D}}^{-1}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 1 / 2 & 0 & -1 / 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 0 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & -1 / 2
\end{array}\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
{[P]_{\mathcal{D}}=P_{\mathcal{D} \leftarrow \mathcal{S}}[P]_{\mathcal{S}} } & =\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & -1 / 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 0 & -1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & -1 / 2 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
0 \\
2 \\
-1 \\
-2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
0 \\
1 \\
1 / 2 \\
-1 \\
0 \\
-1 / 2 \\
0 \\
2
\end{array}\right] .
\end{aligned}
$$

Proofs

4. Let V be a \mathbb{K}-vector space, $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$. Prove that

$$
V=\bigoplus_{i=1}^{n} \operatorname{span}_{\mathbb{K}}\left\{b_{i}\right\}=\operatorname{span}_{\mathbb{K}}\left\{b_{1}\right\} \oplus \cdots \oplus \operatorname{span}_{\mathbb{K}}\left\{b_{n}\right\} .
$$

(You must show that $V=\operatorname{span}_{\mathbb{K}}\left\{b_{1}\right\}+\ldots+\operatorname{span}_{\mathbb{K}}\left\{b_{n}\right\}$ and that this sum is direct)

Solution: As \mathcal{B} is a basis of V then we see that

$$
V=\operatorname{span}_{\mathbb{K}}\left\{b_{1}\right\}+\ldots+\operatorname{span}_{\mathbb{K}}\left\{b_{n}\right\}
$$

as every $v \in V$ can be written as a linear combination of vectors in \mathcal{B}. Moreover, this sum is direct: suppose that $x \in \operatorname{span}_{\mathbb{K}}\left\{b_{i}\right\} \cap\left(\sum_{j \neq i} \operatorname{span}_{\mathbb{K}}\left\{b_{j}\right\}\right.$. Then,

$$
x=a_{i} b_{i}, \quad \text { and } \quad x=\sum_{j \neq i} a_{j} b_{j}
$$

Hence, we have

$$
a_{i} b_{i}=\sum_{j \neq i} a_{j} b_{j} \Longrightarrow a_{i} b_{i}-\sum_{j \neq i} a_{j} b_{j}=0 v \Longrightarrow a_{1}=a_{2}=\ldots=a_{n}=0
$$

The result follows.

