
Math 110, Summer 2012 Short Homework 4 (SOME) SOLUTIONS
Due Monday 7/2, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Which of the following subsets are bases of the vector space V ? Explain your answer.

A =


 1
−1
0

 ,

01
0

 ,

11
1

 ⊂ R3,

B =

{[
1 −1
0 1

]
,

[
2 2
−1 0

]
,

[
1
2 0
−2 2

]}
⊂ Mat2(Q),

C =


 1
−1
0

 ,

 2
−1
−1

 ,

 1
0
−1

 ⊂ U =


x1

x2
x3

 ∈ C3 | x1 + x2 + x3 = 0

 .

Solution:

- Yes: A is a linearly independent subset of a 3 dimensional vector space with 3 vectors in it.

- No: since Mat2(Q) is 4 dimensional and B contains only three vectors it is not possible for B to
be a basis (Basis Theorem).

- No: U is a 2 dimensional vector space (U = ker f , where : C3 → C is the ’sum all entries’
morphism; now use Rank Theorem) and C has three vectors in it, so can’t be a basis.

2. Consider the linear morphism

tr : Mat2(R)→ R ; A =

[
a11 a12
a21 a22

]
7→ a11 + a12.

Determine an ordered basis B of the subspace U = ker tr ⊂ Mat2(R), and an ordered basis C ⊂ R of R
making sure to explain why you know that the ordered sets you give are bases.

Using the ordered bases B and C you have found, determine the matrix [tr]CB of tr relative to B and C.

Solution: An ordered basis of U is

B =

([
0 1
0 0

]
,

[
0 0
1 0

]
,

[
1 0
0 −1

])
,

and an ordered basis of R is C = (1). Then, since for any v ∈ ker tr we have tr(v) = 0, we must have
that tr(b) = 0, for each b ∈ B. Hence, the matrix of tr with respect to B and C is

[tr]CB = [0 0 0].

3. Consider the vector subspace (you DO NOT have to show this)

Sn = {A ∈ Matn(Q) | A = At} ⊂ Matn(Q),

where At is the transpose of A (so that if A = [aij ] then At = [aji ]). Sn consists of all symmetric n × n
matrices with Q-entries.

a) Determine a basis B of Sn and show that the subset you obtain is a basis.

b) Find a closed formula for the dimension of Sn.

(It might help to consider what happens when n = 2, 3, 4 first)



Consider the subspace
An = {A ∈ Matn(Q) | A = −At} ⊂ Matn(Q).

An consists of all antisymmetric n × n matrices eith Q-entries.

c) Determine a basis C of An and show that the subset you obtain is a basis.

d) Find a closed formula for the dimension of An.

e) Show that Sn ∩ An = {0n} and deduce that Matn(Q) = An ⊕ Sn.

f) You have just shown that D = B ∪C is a basis of Matn(Q). Find the D-coordinates of the matrix

P =

 1 0 −1
1 0 2
−1 −2 1

 ∈ Mat3(Q).

Solution:

a) If A = [aij ] ∈ Sn then we must have aij = aji , for every i , j . Moreover, any A = [aij ] ∈ Matn(Q)
such that aij = aji is a symmetric matrix. Then, the following is an ordered basis

B = (e11, e22, ... , enn, eji ; eij + eji | i < j) :

it is easy to see that this set is linearly independent and if A = [aij ] ∈ Sn, so that aij = aji , then

A = a11e11 + ... + annenn +
∑
i<j

aij(eij + eji ),

so that spanQB = Sn. Hence, B is a basis.

b) We need to count the vectors in B: we have n vectors coming from e11, ... , enn and are left with
counting the size of the set {eij + eji | 1 ≤ i < j ≤ n}. For i = 1 there are n − 1 possibilities of j
so that i < j ≤ n, for i = 2 there are n − 2 possibilities for i < j ≤ n, for i = 3 there are n − 3
possibilities for i < j ≤ n etc. So, for i = k there are n − k possibilities for i < j ≤ n. Hence, we
have an extra (n − 1) + (n − 2) + ... + 2 + 1 vectors. Thus,

dimQ Sn = 1 + 2 + 3 + ... + (n − 2) + (n − 1) + n =
1

2
n(n + 1).

c) If A = [aij ] ∈ An then aij = −aji ; in particular, we must have aii = 0, for i = 1, ... , n. Now, a
basis is

C = (eij − eji | 1 ≤ i < j ≤ n).

as you can check that C is linearly independent and spans Mat2(Q).

d) Counting as before we see that

dimAn = 1 + 2 + 3 + ... + (n − 2) + (n − 1) =
1

2
n(n − 1).

(There are ne diagonal matrices this time.)

e) Let A = [aij ] ∈ Sn ∩An. Then, we must have that aij = aji , for every i , j , and aij = −aji , for every
i , j . Hence, we must have

aij = aji = −aij , for every i , j ,

so that aij = 0, for every i , j , and A = 0n. So, we know that sum An + Sn = An ⊕ Sn is direct.
Now, use the dimension formula

dim(An + Sn) = dimAn + dim Sn − dimAn ∩ Sn = n2.

So, we must have Matn(Q) = An + Sn = An ⊕ Sn, since dimMatn(Q) = n2.



f) Denote

D = (e11, e22, e33, e12 + e21, e13 + e31, e23 + e32, e12 − e21, e13 − e31, e23 − e32).

Then, if S = (e11, e12, e13, e21, e22, e23, e31, e32, e33) is the standard basis then we have

PS←D =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 −1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 0 −1
0 0 1 0 0 0 0 0 0


,

=⇒ PD←S = P−1S←D =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1/2 0 1/2 0 0 0 0 0
0 0 1/2 0 0 0 1/2 0 0
0 0 0 0 0 1/2 0 1/2 0
0 1/2 0 −1/2 0 0 0 0 0
0 0 1/2 0 0 0 −1/2 0 0
0 0 0 0 0 1/2 0 −1/2 0


.

Hence,

[P]D = PD←S [P]S =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1/2 0 1/2 0 0 0 0 0
0 0 1/2 0 0 0 1/2 0 0
0 0 0 0 0 1/2 0 1/2 0
0 1/2 0 −1/2 0 0 0 0 0
0 0 1/2 0 0 0 −1/2 0 0
0 0 0 0 0 1/2 0 −1/2 0





1
0
−1
1
0
2
−1
−2
1



=



1
0
1

1/2
−1
0
−1/2
0
2


.

Proofs

4. Let V be a K-vector space, B = (b1, ... , bn). Prove that

V =
n⊕

i=1

spanK{bi} = spanK{b1} ⊕ · · · ⊕ spanK{bn}.

(You must show that V = spanK{b1}+ ... + spanK{bn} and that this sum is direct)



Solution: As B is a basis of V then we see that

V = spanK{b1}+ ... + spanK{bn},

as every v ∈ V can be written as a linear combination of vectors in B. Moreover, this sum is direct:
suppose that x ∈ spanK{bi} ∩ (

∑
j 6=i spanK{bj}. Then,

x = aibi , and x =
∑
j 6=i

ajbj .

Hence, we have

aibi =
∑
j 6=i

ajbj =⇒ aibi −
∑
j 6=i

ajbj = 0V =⇒ a1 = a2 = ... = an = 0.

The result follows.


