Math 110, Summer 2012 Short Homework 4

Due Monday 7/2, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Which of the following subsets are bases of the vector space V? Explain your answer.

$$A = \left\{ \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \right\} \subset \mathbb{R}^{3},$$
$$B = \left\{ \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ \frac{1}{2} & 0\\ -2 & 2 \end{bmatrix} \right\} \subset Mat_{2}(\mathbb{Q}),$$
$$C = \left\{ \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ -1 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} \right\} \subset U = \left\{ \begin{bmatrix} x_{1}\\ x_{2}\\ x_{3} \end{bmatrix} \in \mathbb{C}^{3} \mid x_{1} + x_{2} + x_{3} = 0 \right\}$$

2. Consider the linear morphism

$$\mathsf{tr}: \mathit{Mat}_2(\mathbb{R}) o \mathbb{R}$$
 ; $\mathit{A} = egin{bmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} \ \mathsf{a}_{21} & \mathsf{a}_{22} \end{bmatrix} \mapsto \mathsf{a}_{11} + \mathsf{a}_{12}.$

Determine an ordered basis \mathcal{B} of the subspace $U = \ker \operatorname{tr} \subset Mat_2(\mathbb{R})$, and an ordered basis $\mathcal{C} \subset \mathbb{R}$ of \mathbb{R} making sure to explain why you know that the ordered sets you give are bases.

Using the ordered bases \mathcal{B} and \mathcal{C} you have found, determine the matrix $[tr]_{\mathcal{B}}^{\mathcal{C}}$ of tr relative to \mathcal{B} and \mathbb{C} .

3. Consider the vector subspace (you DO NOT have to show this)

$$S_n = \{A \in Mat_n(\mathbb{Q}) \mid A = A^t\} \subset Mat_n(\mathbb{Q}),$$

where A^t is the transpose of A (so that if $A = [a_{ij}]$ then $A^t = [a_{ji}]$). S_n consists of all symmetric $n \times n$ matrices with \mathbb{Q} -entries.

- a) Determine a basis \mathcal{B} of S_n and show that the subset you obtain is a basis.
- b) Find a closed formula for the dimension of S_n .

(It might help to consider what happens when n = 2, 3, 4 first)

Consider the subspace

$$A_n = \{A \in Mat_n(\mathbb{Q}) \mid A = -A^t\} \subset Mat_n(\mathbb{Q}).$$

 A_n consists of all antisymmetric $n \times n$ matrices eith \mathbb{Q} -entries.

- c) Determine a basis C of A_n and show that the subset you obtain is a basis.
- d) Find a closed formula for the dimension of A_n .
- e) Show that $S_n \cap A_n = \{0_n\}$ and deduce that $Mat_n(\mathbb{Q}) = A_n \oplus S_n$.
- f) You have just shown that $\mathcal{D} = \mathcal{B} \cup \mathcal{C}$ is a basis of $Mat_n(\mathbb{Q})$. Find the \mathcal{D} -coordinates of the matrix

$$P = egin{bmatrix} 1 & 0 & -1 \ 1 & 0 & 2 \ -1 & -2 & 1 \end{bmatrix} \in \mathit{Mat}_3(\mathbb{Q}).$$

Proofs

4. Let V be a \mathbb{K} -vector space, $\mathcal{B} = (b_1, ..., b_n)$. Prove that

$$V = \bigoplus_{i=1}^n \operatorname{span}_{\mathbb{K}} \{b_i\} = \operatorname{span}_{\mathbb{K}} \{b_1\} \oplus \cdots \oplus \operatorname{span}_{\mathbb{K}} \{b_n\}.$$

(You must show that $V = \operatorname{span}_{\mathbb{K}} \{b_1\} + ... + \operatorname{span}_{\mathbb{K}} \{b_n\}$ and that this sum is direct)