Math 110, Summer 2012 Short Homework 4

Due Monday 7/2, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Which of the following subsets are bases of the vector space V ? Explain your answer.

$$
\begin{gathered}
A=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \subset \mathbb{R}^{3}, \\
B=\left\{\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
2 & 2 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
-2 & 2
\end{array}\right]\right\} \subset \operatorname{Mat}_{2}(\mathbb{Q}) \\
C=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\} \subset U=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{C}^{3} \right\rvert\, x_{1}+x_{2}+x_{3}=0\right\} .
\end{gathered}
$$

2. Consider the linear morphism

$$
\operatorname{tr}: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ; A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \mapsto a_{11}+a_{12}
$$

Determine an ordered basis \mathcal{B} of the subspace $U=\operatorname{ker} \operatorname{tr} \subset \operatorname{Mat}_{2}(\mathbb{R})$, and an ordered basis $\mathcal{C} \subset \mathbb{R}$ of \mathbb{R} making sure to explain why you know that the ordered sets you give are bases.
Using the ordered bases \mathcal{B} and \mathcal{C} you have found, determine the matrix $[\operatorname{tr}]_{\mathcal{B}}^{\mathcal{C}}$ of tr relative to \mathcal{B} and \mathbb{C}.
3. Consider the vector subspace (you DO NOT have to show this)

$$
S_{n}=\left\{A \in \operatorname{Mat}_{n}(\mathbb{Q}) \mid A=A^{t}\right\} \subset \operatorname{Mat}_{n}(\mathbb{Q})
$$

where A^{t} is the transpose of A (so that if $A=\left[a_{i j}\right]$ then $A^{t}=\left[a_{j i}\right]$). S_{n} consists of all symmetric $n \times n$ matrices with \mathbb{Q}-entries.
a) Determine a basis \mathcal{B} of S_{n} and show that the subset you obtain is a basis.
b) Find a closed formula for the dimension of S_{n}.
(It might help to consider what happens when $n=2,3,4$ first)
Consider the subspace

$$
A_{n}=\left\{A \in \operatorname{Mat}_{n}(\mathbb{Q}) \mid A=-A^{t}\right\} \subset \operatorname{Mat}_{n}(\mathbb{Q})
$$

A_{n} consists of all antisymmetric $n \times n$ matrices eith \mathbb{Q}-entries.
c) Determine a basis \mathcal{C} of A_{n} and show that the subset you obtain is a basis.
d) Find a closed formula for the dimension of A_{n}.
e) Show that $S_{n} \cap A_{n}=\left\{0_{n}\right\}$ and deduce that $\operatorname{Mat}_{n}(\mathbb{Q})=A_{n} \oplus S_{n}$.
f) You have just shown that $\mathcal{D}=\mathcal{B} \cup \mathcal{C}$ is a basis of $\operatorname{Mat}_{n}(\mathbb{Q})$. Find the \mathcal{D}-coordinates of the matrix

$$
P=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 2 \\
-1 & -2 & 1
\end{array}\right] \in \operatorname{Mat}_{3}(\mathbb{Q})
$$

Proofs

4. Let V be a \mathbb{K}-vector space, $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$. Prove that

$$
V=\bigoplus_{i=1}^{n} \operatorname{span}_{\mathbb{K}}\left\{b_{i}\right\}=\operatorname{span}_{\mathbb{K}}\left\{b_{1}\right\} \oplus \cdots \oplus \operatorname{span}_{\mathbb{K}}\left\{b_{n}\right\}
$$

(You must show that $V=\operatorname{span}_{\mathbb{K}}\left\{b_{1}\right\}+\ldots+\operatorname{span}_{\mathbb{K}}\left\{b_{n}\right\}$ and that this sum is direct)

