
Math 110, Summer 2012 Short Homework 3 (SOME) SOLUTIONS
Due Monday 6/27, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Is the function
α : Q[t]→ Q[t] ; f 7→ t3f − 3t,

a Q-linear morphism? Justify your answer. Here Q[t] is the Q-vector space of polynomials defined in
the notes.

Solution: No, α is not linear: we see that

α(0Q[t]) = t3.0Q[t] − 3t = −3t 6= 0Q[t].

Since linear morphisms must take zero vectors to zero vectors we can’t possibly have that α is linear.

2. Which of the following functions are K-linear? Justify your answers.

f : R2 7→ R4 ;

[
x1
x2

]
7→


3x1 + 2x2
exp(x1)

0
−x1

 , (K = R)

g : Mat3,2(C) 7→ Mat2,3(C) ; A 7→ PAQ, where P, Q ∈ Mat2,3(Q) are fixed, (K = C)

h : Q{1,2,3} 7→ Mat2,2(Q) ; (f : i 7→ f (i)) 7→
[

f (1) 2f (2) + 3f (3)
0 −f (1)

]
. (K = Q)

Solution:

f : No: we do not have f (0) = 0.

g : Yes: this follows from basic properties of matrix arithmetic. For A, B ∈ Mat2(C),λ ∈ C we have

g(A+λB) = P(A+λB)Q = P(AQ +λBQ) = PAQ +P(λB)Q = PAQ +λPBQ = g(A)+λg(B).

Hence, g satisfies LIN so is linear.

h: Yes: let f , g ∈ Q{1,2,3},λ ∈ Q. Then,

h(f + λg) =

[
(f + λg)(1) 2(f + λg)(2) + 3(f + λg)(3)

0 −(f + λg)(1)

]
=

[
f (1) + λg(1) 2f (2) + λ2g(2) + 3f (3) + λ3g(3)

0 −f (1)− λg(1)

]
=

[
f (1) 2f (2) + 3f (3)

0 −f (1)

]
+ λ

[
g(1) 2g(2) + 3g(3)

0 −g(1)

]
= h(f ) + λh(g).

Hence, h satisfies LIN so is linear.

Proofs

3. Let P be the set of positive numbers, so P = (0,∞). Define

α : P × P → P ; (x , y) 7→ xy , σ : R× P → P ; (λ, x) 7→ xλ.

Show that (P,α,σ) is an R-vector space. You must check Axioms VS1-VS8 and you need to define
0P ∈ P and, for any x ∈ P, −x ∈ P.

Can you explain how this ‘weird’ R-vector space arises? (Hint: there is a bijective function L : P → R
that might help you understand why we have defined ‘addition’ as ‘multiplication’.)
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Solution: We must have 0P = 1 ∈ P and, for any x ∈ P, we take −x = x−1 ∈ P. Then, all of the
axioms hold.

The function log : P → R is such that log(xy) = log(x) + log(y) and so turns multiplication into
addition. This is where this R-vector space structure comes from.

4. Let V be a K-vector space, E ⊂ V a nonempty subset. Prove that spanKE is equal to the intersection
of all subspaces U ⊂ V such that E ⊂ U. So, if F is the set of all subspaces of V that contain E (ie,
U ∈ F if and only if E ⊂ U), then prove that

spanKE =
⋂
U∈F

U.

(Hint: to show that two sets A, B are equal, it suffices to show that A ⊂ B and B ⊂ A.)

Solution: spanKE ⊂
⋂

U∈F U : let v = c1e1 + ... + cnen ∈ spanKE . Then, since E ⊂ U, for every
U ∈ F , and each U is a subspace (so closed under addition and scalar multiplication), we must have
v ∈ U, for every U ∈ F . Hence, spanKE ⊂

⋂
U∈F U.⋂

U∈F U ⊂ spanKE : since spanKE is a subspace of V and E ⊂ spanKE , we have that spanKE ∈ F .
Now, for every W ∈ F we have that ⋂

U∈F

U ⊂W ,

because, by definition, ⋂
U∈F

U = {v ∈ V | v ∈ U, for every U ∈ F},

so that vectors in
⋂

U∈F U are, by definition, vectors that lie in every U ∈ F . In particular, for a
specific W ∈ F , vectors in

⋂
U∈F U must lie in W , so that

⋂
U∈F U is a subset of W . Hence, for

W = spanKE ∈ F , we have ⋂
U∈F

U ⊂ spanKE .

5. Let V , W be K-vector spaces, f ∈ HomK(V , W ) an isomorphism. Let E be a nonempty subset of
V . Prove:

- E is linearly independent in V if and only if f (E ) is linearly independent in W .

- E spans V if and only if f (E ) spans W .

Here, we define f (E ) = {f (e) | e ∈ E}.
Solution:

- (⇒) Suppose that E is linearly independent. We want to show that f (E ) is linearly independent.
So, suppose that there is a linear relation

c1f (e1) + ... + cnf (en) = 0W ,

among vectors in f (E ). Then, as f is linear we have

f (c1e1 + ... + cnen) = 0W ,

so that
c1e1 + ... + cnen ∈ ker f = {0V }, since f injective.

Hence, we have
c1e1 + ... + cnen = 0V ,

so that c1 = ... = cn = 0 since E is assumed linearly independent.

(⇐) Suppose that f (E ) is linearly independent. Consider a linear relation among vectors in E and
apply f to this linear relation to obtain a linear relation among vectors in f (E ). As f (E ) is linearly
independent this must be the trivial linear relation so that the initial linear relation is also trivial.
The details are left to the reader.
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- (⇒) Suppose that E spans V . Then, since f is surjective we must have that f (E ) spans W . The
details are left to the reader.

(⇐) Suppose that f (E ) spans W , so that spanK{f (e) | e ∈ E} = W . Let v ∈ V . Then,
f (v) ∈W so that we have a linear combination

f (v) = c1f (e1) + ... + cnf (en) = f (c1e1 + ... + cnen).

Since f is injective then we must have

v = c1e1 + ... + cnen ∈ spanKE .

Hence, V = spanKE .
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