Math 110, Summer 2012 Short Homework 3

Due Monday 6/27, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Is the function

$$
\alpha: \mathbb{Q}[t] \rightarrow \mathbb{Q}[t] ; f \mapsto t^{3} f-3 t
$$

a \mathbb{Q}-linear morphism? Justify your answer. Here $\mathbb{Q}[t]$ is the \mathbb{Q}-vector space of polynomials defined in the notes.
2. Which of the following functions are \mathbb{K}-linear? Justify your answers.

$$
\begin{gathered}
f: \mathbb{R}^{2} \mapsto \mathbb{R}^{4} ;\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
3 x_{1}+2 x_{2} \\
\exp \left(x_{1}\right) \\
0 \\
-x_{1}
\end{array}\right],(\mathbb{K}=\mathbb{R}) \\
g: \operatorname{Mat}_{3,2}(\mathbb{C}) \mapsto M a t_{2,3}(\mathbb{C}) ; A \mapsto P A Q, \text { where } P, Q \in M a t_{2,3}(\mathbb{Q}) \text { are fixed, }(\mathbb{K}=\mathbb{C}) \\
h: \mathbb{Q}^{\{1,2,3\}} \mapsto M a t_{2,2}(\mathbb{Q}) ;(f: i \mapsto f(i)) \mapsto\left[\begin{array}{cc}
f(1) & 2 f(2)+3 f(3) \\
0 & -f(1)
\end{array}\right] \cdot(\mathbb{K}=\mathbb{Q})
\end{gathered}
$$

Proofs

3. Let P be the set of positive numbers, so $P=(0, \infty)$. Define

$$
\alpha: P \times P \rightarrow P ;(x, y) \mapsto x y, \quad \sigma: \mathbb{R} \times P \rightarrow P ;(\lambda, x) \mapsto x^{\lambda}
$$

Show that (P, α, σ) is an \mathbb{R}-vector space. You must check Axioms VS1-VS8 and you need to define $0_{P} \in P$ and, for any $x \in P,-x \in P$.
Can you explain how this 'weird' \mathbb{R}-vector space arises? (Hint: there is a bijective function $L: P \rightarrow \mathbb{R}$ that might help you understand why we have defined 'addition' as 'multiplication'.)
4. Let V be a \mathbb{K}-vector space, $E \subset V$ a nonempty subset. Prove that $\operatorname{span}_{\mathbb{K}} E$ is equal to the intersection of all subspaces $U \subset V$ such that $E \subset U$. So, if \mathcal{F} is the set of all subspaces of V that contain E (ie, $U \in \mathcal{F}$ if and only if $E \subset U$), then prove that

$$
\operatorname{span}_{\mathbb{K}} E=\bigcap_{U \in \mathcal{F}} U .
$$

(Hint: to show that two sets A, B are equal, it suffices to show that $A \subset B$ and $B \subset A$.)
5. Let V, W be \mathbb{K}-vector spaces, $f \in \operatorname{Hom}_{\mathbb{K}}(V, W)$ an isomorphism. Let E be a nonempty subset of V. Prove:

- E is linearly independent in V if and only if $f(E)$ is linearly independent in W.
- E spans V if and only if $f(E)$ spans W.

Here, we define $f(E)=\{f(e) \mid e \in E\}$.

