Math 110, Summer 2012 Short Homework 3

Due Monday 6/27, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Is the function

$$\alpha: \mathbb{Q}[t] \to \mathbb{Q}[t]; \ f \mapsto t^3 f - 3t,$$

a Q-linear morphism? Justify your answer. Here $\mathbb{Q}[t]$ is the Q-vector space of polynomials defined in the notes.

2. Which of the following functions are K-linear? Justify your answers.

$$f: \mathbb{R}^2 \mapsto \mathbb{R}^4$$
; $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 3x_1 + 2x_2 \\ \exp(x_1) \\ 0 \\ -x_1 \end{bmatrix}$, $(\mathbb{K} = \mathbb{R})$

 $g: Mat_{3,2}(\mathbb{C}) \mapsto Mat_{2,3}(\mathbb{C}) ; A \mapsto PAQ, \text{ where } P, Q \in Mat_{2,3}(\mathbb{Q}) \text{ are fixed, } (\mathbb{K} = \mathbb{C})$ $h: \mathbb{Q}^{\{1,2,3\}} \mapsto Mat_{2,2}(\mathbb{Q}) ; (f: i \mapsto f(i)) \mapsto \begin{bmatrix} f(1) & 2f(2) + 3f(3) \\ 0 & -f(1) \end{bmatrix} . (\mathbb{K} = \mathbb{Q})$

Proofs

3. Let P be the set of positive numbers, so $P = (0, \infty)$. Define

$$\alpha: P \times P \to P$$
; $(x, y) \mapsto xy$, $\sigma: \mathbb{R} \times P \to P$; $(\lambda, x) \mapsto x^{\lambda}$.

Show that (P, α, σ) is an \mathbb{R} -vector space. You must check Axioms VS1-VS8 and you need to define $0_P \in P$ and, for any $x \in P$, $-x \in P$.

Can you explain how this 'weird' \mathbb{R} -vector space arises? (*Hint: there is a bijective function* $L : P \to \mathbb{R}$ *that might help you understand why we have defined 'addition' as 'multiplication'.*)

4. Let V be a \mathbb{K} -vector space, $E \subset V$ a nonempty subset. Prove that $\text{span}_{\mathbb{K}}E$ is equal to the intersection of all subspaces $U \subset V$ such that $E \subset U$. So, if \mathcal{F} is the set of all subspaces of V that contain E (ie, $U \in \mathcal{F}$ if and only if $E \subset U$), then prove that

$$\operatorname{span}_{\mathbb{K}} E = \bigcap_{U \in \mathcal{F}} U.$$

(Hint: to show that two sets A, B are equal, it suffices to show that $A \subset B$ and $B \subset A$.)

5. Let V, W be K-vector spaces, $f \in Hom_{\mathbb{K}}(V, W)$ an isomorphism. Let E be a nonempty subset of V. Prove:

- E is linearly independent in V if and only if f(E) is linearly independent in W.
- E spans V if and only if f(E) spans W.

Here, we define $f(E) = \{f(e) \mid e \in E\}$.