
Math 110, Summer 2012 Short Homework 2
Due Monday 6/25, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Determine the linear (in)dependence of the following subsets:
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, I2 is the 2× 2 identity matrix.

2. Find a vector v ∈ E such that spanKE = spanKE
′, where

E =
{
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}
⊂ Mat2(Q), where B =
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.

and E ′ = E \ {v}.

3. Let V = R3. Consider two planes Π1, Π2 ⊂ R3 that pass through the origin. Consider the
corresponding vector subspaces U1,U2 ⊂ R3. Under what conditions must we have U1 + U2 = R3? Is
it possible for U1 ∩ U2 = {0R3}?

Suppose that W = spanK{v} ⊂ R3, for v ∈ R3. Under what conditions can we have U1 + W = R3? Is
it possible for R3 = U1 ⊕W ? Explain your answer.

Proofs

4. Let V be a K-vector space, U,W ⊂ V vector subspaces of V . Prove:

- U + W is a vector subspace of V ,

- U ∩W is a vector subspace of V ,

- U ∪W is a vector subspace if and only if U ⊂W or W ⊂ U.

Give an example of two subspaces of U,W ⊂ R2 such that U ∪W is not a subspace of R2.

5. Let V be a K-vector space and A,B ⊂ V be nonempty subsets of V . Prove:

spanK(A ∪ B) = spanKA + spanKB.

6. Let f ∈ HomK(V ,W ), where V ,W are K-vector spaces. Prove:

- ker f ⊂ V is a vector subspace of V ,

- imf ⊂W is a vector subspace of W .
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