Math 110, Summer 2012 Short Homework 2

Due Monday 6/25, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Calculations

1. Determine the linear (in)dependence of the following subsets:

$$
\begin{gathered}
E_{1}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \subset \mathbb{Q}^{3}, \\
E_{2}=\left\{I_{2}, A, A^{2}\right\} \subset M_{2}(\mathbb{R}), \text { where } A=\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 1
\end{array}\right], I_{2} \text { is the } 2 \times 2 \text { identity matrix. }
\end{gathered}
$$

2. Find a vector $v \in E$ such that $\operatorname{span}_{\mathbb{K}} E=\operatorname{span}_{\mathbb{K}} E^{\prime}$, where

$$
E=\left\{I_{2}, B, B^{2}, B^{3}\right\} \subset \operatorname{Mat}_{2}(\mathbb{Q}), \quad \text { where } B=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

and $E^{\prime}=E \backslash\{v\}$.
3. Let $V=\mathbb{R}^{3}$. Consider two planes $\Pi_{1}, \Pi_{2} \subset \mathbb{R}^{3}$ that pass through the origin. Consider the corresponding vector subspaces $U_{1}, U_{2} \subset \mathbb{R}^{3}$. Under what conditions must we have $U_{1}+U_{2}=\mathbb{R}^{3}$? Is it possible for $U_{1} \cap U_{2}=\left\{0_{\mathbb{R}^{3}}\right\}$?
Suppose that $W=\operatorname{span}_{\mathbb{K}}\{v\} \subset \mathbb{R}^{3}$, for $v \in \mathbb{R}^{3}$. Under what conditions can we have $U_{1}+W=\mathbb{R}^{3}$? Is it possible for $\mathbb{R}^{3}=U_{1} \oplus W$? Explain your answer.
Proofs
4. Let V be a \mathbb{K}-vector space, $U, W \subset V$ vector subspaces of V. Prove:

- $U+W$ is a vector subspace of V,
- $U \cap W$ is a vector subspace of V,
- $U \cup W$ is a vector subspace if and only if $U \subset W$ or $W \subset U$.

Give an example of two subspaces of $U, W \subset \mathbb{R}^{2}$ such that $U \cup W$ is not a subspace of \mathbb{R}^{2}.
5. Let V be a \mathbb{K}-vector space and $A, B \subset V$ be nonempty subsets of V. Prove:

$$
\operatorname{span}_{\mathbb{K}}(A \cup B)=\operatorname{span}_{\mathbb{K}} A+\operatorname{span}_{\mathbb{K}} B
$$

6. Let $f \in \operatorname{Hom}_{\mathbb{K}}(V, W)$, where V, W are \mathbb{K}-vector spaces. Prove:

- $\operatorname{ker} f \subset V$ is a vector subspace of V,
- $\operatorname{im} f \subset W$ is a vector subspace of W.

