Math 110, Summer 2012 Short Homework 1, (SOME) SOLUTIONS

Due Wednesday 6/20, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Some warm-up calculations

1. Row-reduce the following matrices to reduced echelon form:

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & -1 \\
-1 & 1 & -1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
3 & -1 & 0 & 0 \\
-1 & 2 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right] .
$$

Solution: You should find that

$$
A \sim I_{3}, \quad B \sim\left[\begin{array}{lllr}
1 & 0 & 0 & -1 / 7 \\
0 & 1 & 0 & -3 / 7 \\
0 & 0 & 1 & 12 / 7
\end{array}\right]
$$

2. For the following matrix equations determine whether a solution exists. If so, determine all possible solutions.

$$
A \underline{x}=\underline{0}, \quad B \underline{x}=\underline{0}, \quad A \underline{x}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] .
$$

Solution: For a homogeneous matrix equation a solution always exists. hence, $A \underline{x}=\underline{0}$ and $B \underline{x}=\underline{0}$ always have solutions (namely the solution $\underline{x}=\underline{0}$).
Since $A \sim I_{3}$ then $A \underline{x}=\underline{0}$ if and only if $I_{3} \underline{x}=\underline{0}$. Hence, there is only one solution to $A \underline{x}=\underline{0}$, namely the trivial solution.
We have

$$
B \underline{x}=\underline{0} \Leftrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & -1 / 7 \\
0 & 1 & 0 & -3 / 7 \\
0 & 0 & 1 & 12 / 7
\end{array}\right] \underline{x}=\underline{0}
$$

Hence, we must have $\underline{x}=\left[\begin{array}{c}x / 7 \\ 3 x / 7 \\ -12 x / 7 \\ x\end{array}\right]$, for any $x \in \mathbb{K}$.
Since A has a pivot in every row then, for any $\underline{b}, A \underline{x}=\underline{b}$ has a solution: if you form the augmented matrix $[A \mid \underline{b}]$ and row-reduce you will obtain the reduced echelon form $\left[I_{3} \mid \underline{c}\right]$. Then, \underline{c} is a solution. In fact, it's the unique solution.
3. Without using determinants show that A is invertible.

Solution: Since A has a pivot in every row/column then A is an invertible matrix $\mathbf{O R}$ since the columns of A are linearly independent then A is invertible $\mathbf{O R}$ etc.

Problems from the notes

4. Show that \mathbb{Q} is not a vector subspace of the \mathbb{R}-vector space \mathbb{R} (where we have the 'usual' notions of addition and scalar multiplication).
Solution: We have $1 \in \mathbb{Q}$ but $\sqrt{2} \cdot 1 \notin \mathbb{Q}$, so that \mathbb{Q} is not closed under scalar multiplication by \mathbb{R}-scalars.
5. Prove that, if (V, α, σ) is a \mathbb{K}-vector space, and $\lambda \in \mathbb{K}$, then $\sigma\left(\lambda, 0_{V}\right)=0_{V}$. (In your solution you can write $\lambda \cdot 0_{v}$ instead of $\sigma\left(\lambda, 0_{V}\right)$)
Solution: Let $\lambda \in \mathbb{K}$. Then,

$$
\begin{aligned}
\lambda 0_{v} & =\lambda\left(0_{v}+0_{v}\right), \quad \text { by } V S 3, \\
& =\lambda 0_{V}+\lambda 0_{V}, \quad \text { by VS7, } \\
\Longrightarrow 0_{V} & =\lambda 0_{V}, \quad \text { by subtracting } 0_{V} \text { from both sides. }
\end{aligned}
$$

6. Prove that V and $\left\{0_{V}\right\}$ are subspaces of a \mathbb{K}-vector space V.
7. Prove: if a nonempty subset $U \subset V$ satisfies Axiom SUB then U satisfies Axiom SUB1, SUB2 and SUB3.

Solution: Suppose that U satisfies SUB.
SUB1 take $u=v=0_{v}, \lambda=\mu=1$, then $0_{v}=1 . u+1 . v \in U$.
SUB2 take $u, v \in V, \lambda=\mu=1$, then $u+v=1 . u+1 . v \in U$.
SUB3 take $u, v \in V, \lambda \in \mathbb{K}, \mu=$, then $\lambda u=\lambda u+0 . v \in U$.

