Math 110, Summer 2012 Short Homework 1

Due Wednesday 6/20, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Some warm-up calculations

1. Row-reduce the following matrices to reduced echelon form:

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & -1 \\
-1 & 1 & -1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
3 & -1 & 0 & 0 \\
-1 & 2 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]
$$

2. For the following matrix equations determine whether a solution exists. If so, determine all possible solutions.

$$
A \underline{x}=\underline{0}, \quad B \underline{x}=\underline{0}, \quad A \underline{x}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] .
$$

3. Without using determinants show that A is invertible.

Problems from the notes

4. Show that \mathbb{Q} is not a vector subspace of the \mathbb{R}-vector space \mathbb{R} (where we have the 'usual' notions of addition and scalar multiplication).
5. Prove that, if (V, α, σ) is a \mathbb{K}-vector space, and $\lambda \in \mathbb{K}$, then $\sigma\left(\lambda, 0_{V}\right)=0_{V}$. (In your solution you can write $\lambda \cdot 0_{v}$ instead of $\sigma\left(\lambda, 0_{V}\right)$)
6. Prove that V and $\left\{0_{v}\right\}$ are subspaces of a \mathbb{K}-vector space V.
7. Prove: if a nonempty subset $U \subset V$ satisfies Axiom SUB then U satisfies Axiom SUB1, SUB2 and SUB3.
