Math 110, Summer 2012 Short Homework 11 (SOME) SOLUTIONS

Due Thursday 8/2, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
0. Was this homework assignment too easy/too difficult/about right? Any other comments are welcome.

Calculations

1. Show that the following bilinear form is an inner product on \mathbb{R}^{3},

$$
B: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} ;(\underline{x}, \underline{y}) \mapsto x_{1} y_{1}+2 x_{2} y_{2}+3 x_{3} y_{3}-x_{1} y_{2}-x_{2} y_{1}-x_{2} y_{3}-x_{3} y_{2}
$$

(You must show that B is symmetric, nondegenerate and positive definite.)
Determine an Euclidean isomorphism

$$
f:\left(\mathbb{R}^{3}, B\right) \rightarrow \mathbb{E}^{3}
$$

What is the length of $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$, with respect to B ?
Solution: Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]
$$

Then, $B=B_{A}$: indeed, for any $\underline{x}, \underline{y} \in \mathbb{R}^{3}$ we have

$$
B_{A}(\underline{x}, \underline{y})=\underline{x}^{t} A \underline{y}=x_{1} y_{1}+2 x_{2} y_{2}+3 x_{3} y_{3}-x_{1} y_{2}-x_{2} y_{1}-x_{2} y_{3}-x_{3} y_{2}
$$

Since A is symmetric and invertible then B is symmetric and nondegenerate. Also, we have

$$
B(\underline{x}, \underline{x})=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}=\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+2 x_{3}^{2} \geq 0, \text { for every } \underline{x} \in \mathbb{R}^{3}
$$

and

$$
B(\underline{x}, \underline{x})=0 \Leftrightarrow x_{3}=0, x_{2}-x_{3}=0, x_{1}-x_{2}=0 \Leftrightarrow x_{1}=x_{2}=x_{3}=0
$$

Consider the coordinates

$$
y_{1}=x_{1}-x_{2}, y_{2}=x_{2}-x_{3}, y_{3}=\sqrt{2} x_{3}
$$

so that

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right](=Q \underline{x}) .
$$

Then, if we let

$$
P=Q^{-1}=\left[\begin{array}{ccc}
1 & 1 & \frac{1}{\sqrt{2}} \\
0 & 1 & \frac{1}{\sqrt{2}} \\
0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

we have that $P^{t} A P=I_{3}$. Now,

$$
T_{Q}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; \underline{x} \mapsto Q \underline{x}
$$

is an isomorphism of \mathbb{R}-vector spaces and

$$
B_{A}(\underline{x}, \underline{y})=\underline{x}^{t} A \underline{y}=\underline{x}^{t} Q^{t} Q \underline{y}=(Q \underline{x})^{t}(Q \underline{y})=(Q \underline{x}) \cdot(Q \underline{y})
$$

so that $f=T_{Q}$ is a Euclidean isomorphism.
Recall that $\|\underline{x}\|=\sqrt{B(\underline{x}, \underline{x})}$, so we have

$$
\left\|\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right\|=\sqrt{B\left(\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]\right)}=\sqrt{4+9+8}=\sqrt{21}
$$

2. Using the inner product B above, determine the orthogonal complement of $\operatorname{span}_{\mathbb{R}}\left\{e_{1}\right\} \subset \mathbb{R}^{3}$ (with respect to B).
Solution: We have

$$
\operatorname{span}_{\mathbb{R}}\left\{e_{1}\right\}^{\perp}=\left\{e_{1}\right\}^{\perp}=\left\{v \in \mathbb{R}^{3} \mid B\left(v, e_{1}\right)=0\right\}
$$

Let $\underline{x} \in \mathbb{R}^{3}$. Then, we want that

$$
0=B\left(\underline{x}, e_{1}\right)=x_{1}-x_{2} \Longrightarrow x_{1}=x_{2}
$$

Hence, we have

$$
\operatorname{span}_{\mathbb{R}}\left\{e_{1}\right\}^{\perp}=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, x_{1}=x_{2}\right\}
$$

3. Show that the following bilinear form is NOT and inner product

$$
B^{\prime}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} ;(\underline{x}, \underline{y}) \mapsto x_{1} y_{1}+x_{2} y_{3}+x_{3} y_{2}
$$

by finding a vector $\underline{x}_{0} \in \mathbb{R}^{3}$ such that $B^{\prime}\left(\underline{x}_{0}, \underline{x}_{0}\right)<0$.
(Hint: determine the canonical form of B^{\prime}.)
Solution: The canonical form of B^{\prime} is

$$
B^{\prime}(\underline{x}, \underline{x})=x_{1}^{2}+2 x_{2} x_{3}=x_{1}^{2}+\frac{1}{2}\left(\left(x_{2}+x_{3}\right)^{2}-\left(x_{2}-x_{3}\right)^{2}\right)
$$

so if we take

$$
\underline{x}_{0}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

then we have $B^{\prime}\left(\underline{x}_{0}, \underline{x}_{0}\right)=-2<0$.

Proofs

4. Prove Pythagoras' theorem (Theorem 3.3.6).

Solution: Suppose that $u, v \in V$ such that $\langle u, v\rangle=0$. Then,
$\|u+v\|^{2}=\langle u+v, u+v\rangle=\langle u, u\rangle+\langle v, v\rangle+\langle u, v\rangle+\langle v, u\rangle=\|u\|^{2}+\|v\|^{2}+0+0=\|u\|^{2}+\|v\|^{2}$, where we have used that $\langle v, u\rangle=\langle u, v\rangle=0$.
5. Prove the Cauchy-Schwarz inequality (Theorem 3.3.6) as follows: let $u, v \in V$.

- if $v=0 v$ then the result is easy (you must still show this!).
- if $v \neq 0 v$ then consider

$$
\langle u-\lambda v, u-\lambda v\rangle, \text { for any } \lambda \in \mathbb{R}
$$

By making an informed choice of λ (expand out the above expression) you will obtain

$$
\langle u, u\rangle\langle v, v\rangle \geq\langle u, v\rangle^{2}
$$

Use this to deduce the result.
Solution: Suppose that $u, v \in V, v=0_{V}$. Then,

$$
0=\langle u, v\rangle \leq\|u\|\|v\|=0 .
$$

Now, suppose that $v \neq 0_{V}$. Then, for any $\lambda \in \mathbb{R}$,

$$
0 \leq\langle u-\lambda v, u-\lambda v\rangle=\langle u, u\rangle+\lambda^{2}\langle v, v\rangle-2 \lambda\langle u, v\rangle .
$$

Let

$$
\lambda=\frac{\langle u, v\rangle}{\langle v, v\rangle} \in \mathbb{R}
$$

(this is well-defined as $v \neq 0_{V}$) then the above expression gives

$$
0 \leq\langle u, u\rangle+\frac{\langle v, u\rangle^{2}}{\langle v, v\rangle}-2 \frac{\langle v, u\rangle^{2}}{\langle v, v\rangle} \Longrightarrow\langle v, u\rangle^{2} \leq\langle u, u\rangle\langle v, v\rangle,
$$

since $\langle v, v\rangle>0$. Hence, taking the (positive) square root of both sides gives the result.
6. Prove that an Euclidean morphism $f:\left(V_{1},\langle,\rangle_{1}\right) \rightarrow\left(V_{2},\langle,\rangle_{2}\right)$ is injective.

Solution: Let $f: V_{1} \rightarrow V_{2}$ be an Eucliean morphism. Then, for any $v \in \operatorname{ker} f$, we have

$$
0=\langle f(v), f(v)\rangle_{2}=\langle v, v\rangle_{1} \Longrightarrow\|v\|_{1}^{2}=0 \Longrightarrow\|v\|_{1}=0 \Longrightarrow v=0_{v}
$$

7. Let $(V,\langle\rangle$,$) be an Euclidean space, S \subset V$ a nonempty subset. Prove that S^{\perp} is a subspace and that

$$
\left(\operatorname{span}_{\mathbb{R}} S\right)^{\perp}=S^{\perp}
$$

(To show two sets A, B are equal, it suffices to show that $A \subset B$ and $B \subset A$.)
Solution: Let $u, v \in S^{\perp}, \lambda, \mu \in \mathbb{R}$. Then, for any $s \in S$ we have

$$
\langle s, \lambda u+\mu v\rangle=\lambda\langle s, u\rangle+\mu\langle s, v\rangle=0
$$

Hence, $\lambda u+\mu v \in S^{\perp}$.
Let $x \in\left(\operatorname{span}_{\mathbb{R}} S\right)^{\perp}$, so that $\langle x, u\rangle=0$, for every $u \in \operatorname{span}_{\mathbb{R}} S$. In particular, for every $s \in S \subset \operatorname{span}_{\mathbb{R}} S$ we have $\langle x, s\rangle=0$. Hence, $x \in S^{\perp}$.

Conversely, suppose that $x \in S^{\perp}$ and let $u=c_{1} s_{1}+\ldots+c_{k} s_{k} \in \operatorname{span}_{\mathbb{R}} S$. Then,

$$
\langle x, u\rangle=\left\langle x, c_{1} s_{1}+\ldots+c_{k} s_{k}\right\rangle=c_{1}\left\langle x, s_{1}\right\rangle+\ldots+c_{k}\left\langle x, s_{k}\right\rangle=0+\ldots+0=0 .
$$

Hence, $x \in\left(\operatorname{span}_{\mathbb{R}} S\right)^{\perp}$ and the result follows.

