
Math 110, Summer 2012 Short Homework 11 (SOME) SOLUTIONS
Due Thursday 8/2, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

0. Was this homework assignment too easy/too difficult/about right? Any other comments are welcome.

Calculations

1. Show that the following bilinear form is an inner product on R3,

B : R3 × R3 → R ; (x , y) 7→ x1y1 + 2x2y2 + 3x3y3 − x1y2 − x2y1 − x2y3 − x3y2.

(You must show that B is symmetric, nondegenerate and positive definite.)

Determine an Euclidean isomorphism
f : (R3, B)→ E3.

What is the length of

 1
−1
2

, with respect to B?

Solution: Consider the matrix

A =

 1 −1 0
−1 2 −1
0 −1 3

 .

Then, B = BA: indeed, for any x , y ∈ R3 we have

BA(x , y) = x tAy = x1y1 + 2x2y2 + 3x3y3 − x1y2 − x2y1 − x2y3 − x3y2.

Since A is symmetric and invertible then B is symmetric and nondegenerate. Also, we have

B(x , x) = x2
1 + 2x2

2 + 3x2
3 − 2x1x2 − 2x2x3 = (x1 − x2)2 + (x2 − x3)2 + 2x2

3 ≥ 0, for every x ∈ R3,

and
B(x , x) = 0⇔ x3 = 0, x2 − x3 = 0, x1 − x2 = 0⇔ x1 = x2 = x3 = 0.

Consider the coordinates
y1 = x1 − x2, y2 = x2 − x3, y3 =

√
2x3,

so that y1
y2
y3

 =

1 −1 0
0 1 −1

0 0
√

2

x1
x2
x3

 (= Qx).

Then, if we let

P = Q−1 =

1 1 1√
2

0 1 1√
2

0 0 1√
2

 ,

we have that P tAP = I3. Now,
TQ : R3 → R3 ; x 7→ Qx ,

is an isomorphism of R-vector spaces and

BA(x , y) = x tAy = x tQtQy = (Qx)t(Qy) = (Qx) · (Qy),

so that f = TQ is a Euclidean isomorphism.
Recall that ||x || =

√
B(x , x), so we have

∥∥∥∥∥∥
1
−1
2

∥∥∥∥∥∥ =

√√√√√B

 1
−1
2

 ,

 1
−1
2

 =
√

4 + 9 + 8 =
√

21.



2. Using the inner product B above, determine the orthogonal complement of spanR{e1} ⊂ R3 (with
respect to B).

Solution: We have
spanR{e1}⊥ = {e1}⊥ = {v ∈ R3 | B(v , e1) = 0}.

Let x ∈ R3. Then, we want that

0 = B(x , e1) = x1 − x2 =⇒ x1 = x2.

Hence, we have

spanR{e1}⊥ =


x1

x2
x3

 ∈ R3 | x1 = x2

 .

3. Show that the following bilinear form is NOT and inner product

B ′ : R3 × R3 → R ; (x , y) 7→ x1y1 + x2y3 + x3y2,

by finding a vector x0 ∈ R3 such that B ′(x0, x0) < 0.

(Hint: determine the canonical form of B ′.)

Solution: The canonical form of B ′ is

B ′(x , x) = x2
1 + 2x2x3 = x2

1 +
1

2
((x2 + x3)2 − (x2 − x3)2),

so if we take

x0 =

 0
1
−1

 ,

then we have B ′(x0, x0) = −2 < 0.

Proofs

4. Prove Pythagoras’ theorem (Theorem 3.3.6).

Solution: Suppose that u, v ∈ V such that 〈u, v〉 = 0. Then,

||u + v ||2 = 〈u + v , u + v〉 = 〈u, u〉+ 〈v , v〉+ 〈u, v〉+ 〈v , u〉 = ||u||2 + ||v ||2 + 0 + 0 = ||u||2 + ||v ||2,

where we have used that 〈v , u〉 = 〈u, v〉 = 0.

5. Prove the Cauchy-Schwarz inequality (Theorem 3.3.6) as follows: let u, v ∈ V .

- if v = 0V then the result is easy (you must still show this!).

- if v 6= 0V then consider
〈u − λv , u − λv〉, for any λ ∈ R.

By making an informed choice of λ (expand out the above expression) you will obtain

〈u, u〉〈v , v〉 ≥ 〈u, v〉2.

Use this to deduce the result.

Solution: Suppose that u, v ∈ V , v = 0V . Then,

0 = 〈u, v〉 ≤ ||u||||v || = 0.

Now, suppose that v 6= 0V . Then, for any λ ∈ R,

0 ≤ 〈u − λv , u − λv〉 = 〈u, u〉+ λ2〈v , v〉 − 2λ〈u, v〉.



Let

λ =
〈u, v〉
〈v , v〉

∈ R,

(this is well-defined as v 6= 0V ) then the above expression gives

0 ≤ 〈u, u〉+
〈v , u〉2

〈v , v〉
− 2
〈v , u〉2

〈v , v〉
=⇒ 〈v , u〉2 ≤ 〈u, u〉〈v , v〉,

since 〈v , v〉 > 0. Hence, taking the (positive) square root of both sides gives the result.

6. Prove that an Euclidean morphism f : (V1, 〈, 〉1)→ (V2, 〈, 〉2) is injective.

Solution: Let f : V1 → V2 be an Eucliean morphism. Then, for any v ∈ ker f , we have

0 = 〈f (v), f (v)〉2 = 〈v , v〉1 =⇒ ||v ||21 = 0 =⇒ ||v ||1 = 0 =⇒ v = 0V .

7. Let (V , 〈, 〉) be an Euclidean space, S ⊂ V a nonempty subset. Prove that S⊥ is a subspace and
that

(spanRS)⊥ = S⊥.

(To show two sets A, B are equal, it suffices to show that A ⊂ B and B ⊂ A.)

Solution: Let u, v ∈ S⊥,λ,µ ∈ R. Then, for any s ∈ S we have

〈s,λu + µv〉 = λ〈s, u〉+ µ〈s, v〉 = 0.

Hence, λu + µv ∈ S⊥.

Let x ∈ (spanRS)⊥, so that 〈x , u〉 = 0, for every u ∈ spanRS . In particular, for every s ∈ S ⊂ spanRS
we have 〈x , s〉 = 0. Hence, x ∈ S⊥.

Conversely, suppose that x ∈ S⊥ and let u = c1s1 + ... + cksk ∈ spanRS . Then,

〈x , u〉 = 〈x , c1s1 + ... + cksk〉 = c1〈x , s1〉+ ... + ck〈x , sk〉 = 0 + ... + 0 = 0.

Hence, x ∈ (spanRS)⊥ and the result follows.


