Math 110, Summer 2012 Short Homework 11

Due Thursday 8/2, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
0. Was this homework assignment too easy/too difficult/about right? Any other comments are welcome.

Calculations

1. Show that the following bilinear form is an inner product on \mathbb{R}^{3},

$$
B: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} ;(\underline{x}, \underline{y}) \mapsto x_{1} y_{1}+2 x_{2} y_{2}+3 x_{3} y_{3}-x_{1} y_{2}-x_{2} y_{1}-x_{2} y_{3}-x_{3} y_{2}
$$

(You must show that B is symmetric, nondegenerate and positive definite.)
Determine an Euclidean isomorphism

$$
f:\left(\mathbb{R}^{3}, B\right) \rightarrow \mathbb{E}^{3}
$$

What is the length of $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$, with respect to B ?
2. Using the inner product B above, determine the orthogonal complement of $\operatorname{span}_{\mathbb{R}}\left\{e_{1}\right\} \subset \mathbb{R}^{3}$ (with respect to B).
3. Show that the following bilinear form is NOT and inner product

$$
B^{\prime}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} ;(\underline{x}, \underline{y}) \mapsto x_{1} y_{1}+x_{2} y_{3}+x_{3} y_{2}
$$

by finding a vector $\underline{x}_{0} \in \mathbb{R}^{3}$ such that $B^{\prime}\left(\underline{x}_{0}, \underline{x}_{0}\right)<0$.
(Hint: determine the canonical form of B^{\prime}.)

Proofs

4. Prove Pythagoras' theorem (Theorem 3.3.6).
5. Prove the Cauchy-Schwarz inequality (Theorem 3.3.6) as follows: let $u, v \in V$.

- if $v=0_{v}$ then the result is easy (you must still show this!).
- if $v \neq 0_{v}$ then consider

$$
\langle u-\lambda v, u-\lambda v\rangle, \text { for any } \lambda \in \mathbb{R}
$$

By making an informed choice of λ (expand out the above expression) you will obtain

$$
\langle u, u\rangle\langle v, v\rangle \geq\langle u, v\rangle^{2}
$$

Use this to deduce the result.
6. Prove that an Euclidean morphism $f:\left(V_{1},\langle,\rangle_{1}\right) \rightarrow\left(V_{2},\langle,\rangle_{2}\right)$ is injective.
7. Let $(V,\langle\rangle$,$) be an Euclidean space, S \subset V$ a nonempty subset. Prove that S^{\perp} is a subspace and that

$$
\left(\operatorname{span}_{\mathbb{R}} S\right)^{\perp}=S^{\perp}
$$

(To show two sets A, B are equal, it suffices to show that $A \subset B$ and $B \subset A$.)

