
Math 110, Summer 2012 Short Homework 10 (SOME) SOLUTIONS
Due Monday 7/30, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

0. Was this homework assignment too easy/too difficult/about right? Any other comments are welcome.

Calculations

1. For the following symmetric matrices A ∈ GLn(R) determine P ∈ GLn(R) such that

P tAP =

d1

. . .

dn

 di ∈ {1,−1}.

i) A =

[
1 −1
−1 0

]
,

ii) A =

 0 −1 1
−1 0 0
1 0 1

,

iii) A =


1 0 1 0
0 −1 2 0
1 2 0 1
0 0 1 2

 .

What is the signature of each of the corresponding bilinear forms BA ∈ BilR(Rn).

Solution: We use the ‘completing the square method’ from Example 3.2.9:

i) We have
x tAx = x2

1 − 2x1x2 = (x1 − x2)2 + x2
2 .

Consider the new coordinates
y1 = x1 − x2, y2 = x2,

so that [
y1
y2

]
=

[
1 −1
0 1

] [
x1
x2

]
(= Qx).

If we set

P = Q−1 =

[
1 1
0 1

]
,

then we have

P tAP =

[
1
−1

]
.

We see that
sig(BA) = 0.

ii) We have
x tAx = −2x1x2 + 2x1x3 + x2

3 = −(x1 + x2)2 + x2
2 + (x1 + x3)2.

Consider the new coordinates

y1 = x1 + x2, y2 = x2, y3 = x1 + x3,

so that y1
y2
y3

 =

1 1 0
0 1 0
1 0 1

x1
x2
x3

 (= Qx).



Set

P = Q−1 =

 1 −1 0
0 1 0
−1 1 1

 ,

and we then have

P tAP =

−1
1

1

 .

We have
sig(BA) = 1.

iii) We have

x tAx = x2
1 − x2

2 + 2x1x3 + 4x2x3 + 2x3x4 + 2x2
4 = (x1 + x3)2 − (x2 − 2x3)2 + 3(x3 +

1

3
x4)2 +

5

3
x2
4 .

Consider the new coordinates

y1 = x1 + x3, y2 = x2 − 2x3, y3 =
√

3(x3 +
1

3
x4), y4 =

√
5

3
x4,

so that 
y1
y2
y3
y4

 =


1 0 1 0
0 1 −2 0

0 0
√

3 1√
3

0 0 0
√

5
3




x1
x2
x3
x4

 (= Qx)

If we set

P = Q−1 =


1 0 −1√

3
1√
15

0 1 2√
3

−2√
15

0 0 1√
3

−1√
15

0 0 0
√

3
5

 ,

then we have

P tAP =


1
−1

1
1

 .

Hence, we have
sig(BA) = 2.

2. For the matrix A in ii) above, determine an ordered basis B of C3 such that

[BA]B = I3.

(Hint: proceed as you would in the real case, except now you can use the fact that you are allowed to
find square roots of negative numbers. See the proof of the classification of nondegenerate symmetric
bilinear forms over C in Section 3.2.)

Solution: Consider the coordinates

y1 =
√
−1(x1 + x1), y2 = x2, y3 = x1 + x3,

so that
x tAx = y2

1 + y2
2 + y2

3 .



We can express these new coordinates as follows:y1
y2
y3

 =

√−1
√
−1 0

0 1 0
1 0 1

 (= Qx).

Then, Q = PB←S(3) , where B is such that

[BA]B = P t
S(3)←B[BA]S(3)PS(3)←B = (Q−1)tAQ−1.

As
x tAx = y ty = (Qx)t(Qx) = x tQtQx ,

then we must have
A = QtQ,

so that
[BA]B = I3.

Hence, if we know Q−1 = PS(3)←B we can determine B. So, we find that

Q−1 =

−√−1 −1 0
0 1 0√
−1 1 1

 .

Hence,

B =

−√−1
0√
−1

 ,

−1
1
1

 ,

0
0
1


is such that

[BA]B = I3.

Proofs

3. Prove: let B ∈ BilK(V ) be nondegenerate and symmetric, where K is ANY number field. Then,
there exists an basis B ⊂ V such that

[B]B =

d1

. . .

dn

 , di ∈ K.

(This is a generalisation of the results of section 3.2. You just need to copy the proofs of the theorems
in that section.

Deduce that for any symmetric A ∈ GLn(K) there is P ∈ GLn(K) such that P tAP is diagonal.

Solution:

4. Let B ∈ BilK(V ). Prove that B can be written uniquely as B = Bs + Ba, where Bs ∈ BilK(V ) is
symmetric and Ba ∈ BilK(V ) is antisymmetric.

(Hint: you will need to use that Matn(K) = Sn ⊕ An (recall SH4, Q3).)

Solution: Recall the result from SH4: we have the direct sum decomposition

Matn(K) = Sn ⊕ An,

where
Sn = {A ∈ Matn(K) | At = A}, An = {A ∈ Matn(K) | A = −At}.

Let B ⊂ V be an ordered basis. Then, we have an isomorphism of vector spaces

[−]B : BilK(V )→ Matn(K) = Sn ⊕ An,



so for any B ∈ BilK (V ) we have unique Xs ∈ Sn, Xa ∈ An such that

[B]B = Xs + Xa.

If we define the bilinear forms

Bs(u, v) = [u]tBXs [v ]B, Ba(u, v) = [u]tBXa[v ]B,

then we have
B = Bs + Ba,

as
[Bs + Ba]B = [Bs ]B + [Ba]B = Xs + Xa = [B]B.


