Math 110, Summer 2012 Long Homework 6

Due Wednesday 8/8, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. In this problem we will see that every orthogonal matrix $A \in O(2)$ is of the form

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] R_{\theta}, \quad \text { or } A=R_{\theta}
$$

where

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \theta \in[0,2 \pi)
$$

a) Prove that if $A \in O(2)$ then $\operatorname{det} A= \pm 1$.
b) Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in O(2)
$$

Using the fact that $A^{-1}=A^{t}$, show that

$$
(a, b)=(d,-c) \text { if } \operatorname{det}(A)=1, \text { and }(a, b)=(-d, c) \text { if } \operatorname{det}(A)=-1
$$

c) Using b) show that

$$
A=\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right], \text { or } A=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right]
$$

where $a, b \in \mathbb{R}$ are such that $a^{2}+b^{2}=1$. Deduce that there exists unique $\theta \in[0,2 \pi)$ such that

$$
a=\cos \theta, b=\sin \theta
$$

d) Prove that either

$$
A=R_{\theta}, \text { or } A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] R_{\theta}
$$

2. In this problem we will show that if $A \in O(3)$ is such that $\operatorname{det} A=1$, then there exists $P \in O(3)$ such that

$$
P^{t} A P=\left[\begin{array}{cc}
R_{\theta} & 0 \\
0 & 1
\end{array}\right]
$$

Hence, any orthogonal transformation with determinant 1 corresponds to 'rotation about a line L in \mathbb{R}^{3} '. Let $A \in O(3)$ be such that $\operatorname{det} A=1$. Denote the eigenvalues of $A, \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$ (recall that it may not be possible that all eigenvalues are real: for example, the matrix

$$
\left.Z=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \in O(3)\right)
$$

All notions of length, orthogonality in this problem will be with respect to the 'dot product'.
a) Show that A has at least one real eigenvalue. (Hint: every cubic equation admits at least one real root.)
b) Let λ be a real eigenvalue of A. Show that $|\lambda|=1$. Deduce, that $\lambda= \pm 1$. (Hint: What properties do orthogonal transformations (=Euclidean isomorphisms) satisfy?)
c) Recall that

$$
A^{t} A=I_{3}=A A^{t}
$$

so that A is normal. Using the result on eigenspaces of normal morphisms, show that if there is $P \in \mathrm{GL}_{3}(\mathbb{R})$ such that $P^{-1} A P=D$, where $D \in \operatorname{Mat}_{3}(\mathbb{R})$ is diagonal, then there exists $Q \in O(3)$ such that $Q^{t} A Q=D$. (Hint: Gram-Schmidt process).
d) Suppose that A is diagonalisable, so that there exists $P \in G L_{3}(\mathbb{R})$ such that $P^{-1} A P=D$, with $D \in \operatorname{Mat}_{3}(\mathbb{R})$ diagonal. Using b) show that the entries $d_{1}, d_{2}, d_{3} \in \mathbb{R}$ (ie the eigenvalues of A) on the diagonal of D are such that $d_{1}, d_{2}, d_{3} \in\{1,-1\}$ and that the number of 1 s appearing on the diagonal is odd. (Hint: Use that $\lambda_{1} \lambda_{2} \lambda_{3}=\operatorname{det} A=1$.)
e) Deduce that when $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ then there exists $Q \in O(3)$ such that either

$$
Q^{t} A Q=I_{3}, \quad \text { or } \quad Q^{t} A Q=\left[\begin{array}{lll}
-1 & & \\
& -1 & \\
& & 1
\end{array}\right]
$$

(Hint: A is normal, hence diagonalisable.)
f) For the remaining problems assume that not all of the eigenvalues of A are real (so that $\lambda_{i} \in \mathbb{C} \backslash \mathbb{R}$, for some i). Prove that there are precisely two non-real eigenvalues. (Hint: Use that $\lambda_{1} \lambda_{2} \lambda_{3}=\operatorname{det} A=1$ and a))
g) Denote the real eigenvalue $\lambda_{1} \in \mathbb{R}$, so that $\lambda_{2}, \lambda_{3} \in \mathbb{C} \backslash \mathbb{R}$ (by f)). Let $E_{1}=E_{\lambda_{1}}$ denote the λ_{1}-eigenspace of A. Show that $\operatorname{dim} E_{1}=1$ and that E_{1}^{\perp} is A-invariant.
h) Using g) and the fact that A is normal show that there is $Q \in O(3)$ such that

$$
Q^{t} A Q=\left[\begin{array}{cc}
R & 0 \\
0 & \lambda_{1}
\end{array}\right]
$$

where $R \in O(2)$. (Hint: Use properties of eigenspaces of normal morphisms and Gram-Schmidt.)
i) Show that if $S \in O(2)$ is such that $\operatorname{det} S=-1$, then A is similar to $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$. Deduce that in h) we must have $\operatorname{det} R=1$ and $\lambda_{1}=1$. (Hint: if $X=\left[\begin{array}{ll}Y & 0 \\ 0 & Z\end{array}\right]$ then the eigenvalues of X are the eigenvalues of Y together with the eigenvalues of Z.)
j) Deduce that if $A \in O(3)$ with $\operatorname{det} A=1$ then there exists $Q \in O(3)$ such that

$$
Q^{t} A Q=\left[\begin{array}{cc}
R_{\theta} & 0 \\
0 & 1
\end{array}\right], \text { for some } \theta \in[0,2 \pi)
$$

