Math 110, Summer 2012 Long Homework 4 (SOME) SOLUTIONS

Due Wednesday 8/1, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. In this problem we will study (the mathematical version of) the Casimir operator of the angular momentum algebra utilised in quantum mechanics. Casimir operators are used to represent angular momentum, elementary particle mass and spin and many other important quantities that arise in the study of elementary particles.
Let

$$
\mathfrak{s o}(3)=\left\{X \in \operatorname{Mat}_{3}(\mathbb{R}) \mid X=-X^{t}\right\} \subset \operatorname{Mat}_{3}(\mathbb{R})
$$

This is the Lie algebra of the special orthogonal group $S O(3)$ - here

$$
S O(3)=\{g \in O(3) \mid \operatorname{det} g=1\}
$$

It is possible to identify $S O(3)$ as the set of all rigid rotations of \mathbb{R}^{3} (ie, all possible rotations of the sphere). Essentially, elements of $\mathfrak{s o}(3)$ are the infinitesimal generators of rigid rotations.
a) Show that $\mathfrak{s o}(3)$ is a subspace of $\operatorname{Mat}_{3}(\mathbb{R})$ and that $\mathcal{B}=\left(L_{x}, L_{y}, L_{z}\right)$ is a basis of $\mathfrak{s o}(3)$, where

$$
L_{x}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], L_{y}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], L_{z}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Deduce that $\operatorname{dim} \mathfrak{s o}(3)=3$.
Solution: Let $X, Y \in \mathfrak{s o}(3), \lambda, \mu \in \mathbb{R}$. Then,

$$
(\lambda X+\mu Y)^{t}=\lambda X^{t}+\mu Y^{t}=-\lambda X^{t}-\mu Y^{t}=-(\lambda X+\mu Y)^{t}
$$

so that $\lambda X+\mu Y \in \mathfrak{s o (3)}$ and $\mathfrak{s o (3)}$ is a subspace.
Suppose that

$$
a_{x} L_{x}+a_{y} L_{y}+a_{z} L_{z}=0_{3} \Longrightarrow\left[\begin{array}{ccc}
0 & -a_{z} & -a_{y} \\
a_{z} & 0 & -a_{x} \\
a_{y} & a_{x} & 0
\end{array}\right]=0_{3} \Longrightarrow a_{x}=a_{y}=a_{z}=0
$$

Hence, \mathcal{B} is linearly independent.
Now, let $X=\left[x_{i j}\right] \in \mathfrak{s o}(3)$. Then, $X=-X^{t}$, so that

$$
X=\left[\begin{array}{ccc}
0 & x_{12} & x_{13} \\
-x_{12} & 0 & x_{23} \\
-x_{13} & -x_{23} & 0
\end{array}\right]=-x_{12} L_{z}-x_{13} L_{y}-x_{23} L_{x} \in \operatorname{span}_{\mathbb{R}} \mathcal{B}
$$

Hence, $\operatorname{span}_{\mathbb{R}} \mathcal{B}=\mathfrak{s o}(3)$ and \mathcal{B} is a basis. Since \mathcal{B} has 3 elements then $\operatorname{dim} \mathfrak{s o}(3)=3$.
b) Show that if $X, Y \in \mathfrak{s o (3)}$ then

$$
\operatorname{ad}(X)(Y) \stackrel{\text { def }}{=} X Y-Y X \in \mathfrak{s o}(3)
$$

Hence, we have defined a function

$$
\operatorname{ad}(X): \mathfrak{s o}(3) \rightarrow \mathfrak{s o}(3) ; Y \mapsto \operatorname{ad}(X)(Y)=X Y-Y X
$$

Show that $\operatorname{ad}(X)$ is \mathbb{R}-linear, so that $\operatorname{ad}(X) \in \operatorname{End}_{\mathbb{R}}(\mathfrak{s o}(3))$.
Solution: Let $X, Y \in \mathfrak{s o}(3)$. Then,

$$
(X Y-Y X)^{t}=(X Y)^{t}-(Y X)^{t}=Y^{t} X^{t}-X^{t} Y^{t}=(-Y)(-X)-(-X)(-Y)=-(X Y-Y X)
$$

Hence, $\operatorname{ad}(X)(Y) \in \mathfrak{s o}(3)$. Let $Y, Z \in \mathfrak{s o}(3), \lambda \in \mathbb{R}$. Then,
$\operatorname{ad}(X)(Y+\lambda Z)=X(Y+\lambda Z)-(Y+\lambda Z) X=X Y-Y X+\lambda(X Z-Z X)=\operatorname{ad}(X)(Y)+\lambda a d(X)(Z)$,
so that $\operatorname{ad}(X)$ is \mathbb{R}-linear.
b) Determine the 3×3 matrices

$$
\left[\operatorname{ad}\left(L_{x}\right)\right]_{\mathcal{B}},\left[\operatorname{ad}\left(L_{y}\right)\right]_{\mathcal{B}},\left[\operatorname{ad}\left(L_{z}\right)\right]_{\mathcal{B}}
$$

Solution: We have

$$
\begin{aligned}
& {\left[\operatorname{ad}\left(L_{x}\right)\right]_{\mathcal{B}}=\left[\left[\operatorname{ad}\left(L_{x}\right)\left(L_{x}\right)\right]_{\mathcal{B}}\left[\operatorname{ad}\left(L_{x}\right)\left(L_{y}\right)\right]_{\mathcal{B}}\left[\operatorname{ad}\left(L_{x}\right)\left(L_{z}\right)\right]_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]=-L_{x},} \\
& {\left[\operatorname{ad}\left(L_{y}\right)\right]_{\mathcal{B}}=\left[\left[\operatorname{ad}\left(L_{y}\right)\left(L_{x}\right)\right]_{\mathcal{B}}\left[\operatorname{ad}\left(L_{y}\right)\left(L_{y}\right)\right]_{\mathcal{B}}\left[\operatorname{ad}\left(L_{y}\right)\left(L_{z}\right)\right]_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]=L_{y},} \\
& {\left[\operatorname{ad}\left(L_{z}\right)\right]_{\mathcal{B}}=\left[\left[\operatorname{ad}\left(L_{z}\right)\left(L_{x}\right)\right]_{\mathcal{B}}\left[\operatorname{ad}\left(L_{z}\right)\left(L_{y}\right)\right]_{\mathcal{B}}\left[\operatorname{ad}\left(L_{z}\right)\left(L_{z}\right)\right]_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=-L_{z} .}
\end{aligned}
$$

c) Consider the bilinear form (you do NOT have to show B is a bilinear form)

$$
B: \mathfrak{s o}(3) \times \mathfrak{s o}(3) \rightarrow \mathbb{R} ;(X, Y) \mapsto B(X, Y)=\operatorname{tr}\left([\operatorname{ad}(X)]_{\mathcal{B}}[\operatorname{ad}(Y)]_{\mathcal{B}}\right)
$$

i) Prove that, for every $U, V \in \operatorname{Mat}_{3}(\mathbb{R})$ we have $\operatorname{tr}(U V)=\operatorname{tr}(V U)$. Deduce that B is symmetric.
ii) Prove that B is nondegenerate.
iii) For L_{x}, L_{y}, L_{z} find $M_{x}, M_{y}, M_{z} \in \mathfrak{s o}$ (3) such that

$$
B\left(L_{i}, M_{j}\right)=\left\{\begin{array}{ll}
1, & \text { if } i=j, \\
0, & \text { if } i \neq j .
\end{array} \quad \text { Here we take } i, j \in\{x, y, z\}\right.
$$

Solution:

i) Let

$$
U=\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right], \quad V=\left[\begin{array}{lll}
v_{11} & v_{12} & v_{13} \\
v_{21} & v_{22} & v_{23} \\
v_{31} & v_{32} & v_{33}
\end{array}\right]
$$

By considering UV and VU you will find that

$$
\operatorname{tr}(U V)=\operatorname{tr}(V U)
$$

Hence, we have

$$
B(X, Y)=\operatorname{tr}\left([\operatorname{ad}(X)]_{\mathcal{B}}[\operatorname{ad}(Y)]_{\mathcal{B}}\right)=\operatorname{tr}\left([\operatorname{ad}(Y)]_{\mathcal{B}}[\operatorname{ad}(X)]_{\mathcal{B}}\right)=B(Y, X)
$$

so that B is symmetric.
ii) Consider the matrix

$$
[B]_{\mathcal{B}}=\left[b_{i j}\right] \text {, where } b_{i j}=B\left(L_{i}, L_{j}\right) \text {, for } i, j \in\{x, y, z\} .
$$

Then, we have

$$
\begin{aligned}
& B\left(L_{x}, L_{x}\right)=\operatorname{tr}\left(L_{x} L_{x}\right)=-2, B\left(L_{x}, L_{y}\right)=\operatorname{tr}\left(-L_{x} L_{y}\right)=0, B\left(L_{x}, L_{z}\right)=\operatorname{tr}\left(L_{x} L_{z}\right)=0, \\
& B\left(L_{y}, L_{y}\right)=\operatorname{tr}\left(L_{y} L_{y}\right)=-2, B\left(L_{y}, L_{z}\right)=\operatorname{tr}\left(-L_{y} L_{z}\right)=0, B\left(L_{z}, L_{z}\right)=\operatorname{tr}\left(L_{z} L_{z}\right)=-2,
\end{aligned}
$$

so that

$$
[B]_{\mathcal{B}}=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] .
$$

Since this matrix is invertible then we have that B is nondegenerate.
iii) Determining M_{x} such that

$$
B\left(L_{i}, M_{x}\right)= \begin{cases}1, & i=x \\ 0, & i \neq x\end{cases}
$$

is the same as determining $\left[M_{\times}\right]_{\mathcal{B}}=\left[\begin{array}{l}a_{x x} \\ a_{\times y} \\ a_{x 2}\end{array}\right]$ such that

$$
\left[L_{i}\right]_{\mathcal{B}}^{t}[B]_{\mathcal{B}}\left[M_{x}\right]_{\mathcal{B}}= \begin{cases}1, & i=x \\ 0, & i \neq x\end{cases}
$$

Since $\left[L_{x}\right]_{\mathcal{B}}=e_{1},\left[L_{y}\right]_{\mathcal{B}}=e_{2},\left[L_{z}\right]_{\mathcal{B}}=e_{3}$, the above conditions imply that

$$
\left[M_{x}\right]_{\mathcal{B}}=\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
0
\end{array}\right] .
$$

Hence, we have

$$
M_{x}=-\frac{1}{2} L_{x} .
$$

Similarly, we find that

$$
M_{y}=-\frac{1}{2} L_{y}, M_{z}=-\frac{1}{2} L_{z} .
$$

d) Consider the matrix

$$
\Omega=L_{x} M_{x}+L_{y} M_{y}+L_{z} M_{z} \in \operatorname{Mat}_{3}(\mathbb{R}) .
$$

Show that Ω is a scalar multiple of I_{3}.
Ω is called the Casimir operator and appears in the study of quantum angular momentum and leads to the definition of the quantum angular momentum number / (it is usually denoted L^{2} or J^{2} in QM textbooks). Our definition is slightly different than the one you'd see in QM, but only differs by a scalar multiple.

Solution: We have

$$
\Omega=-\frac{1}{2}\left(L_{x}^{2}+L_{y}^{2}+L_{z}^{2}\right)=I_{3} .
$$

2. Consider the basis $\mathcal{B}=(e, h, f) \subset s l_{2}(\mathbb{C})$, defined in Long Homework 1. Here

$$
s l_{2}(\mathbb{C})=\left\{\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{C})\right\} .
$$

Following the steps in Questions 1 (in particular, b), c), d); you DO NOT have to do a) or c)i)) and using the basis \mathcal{B} show that the Casimir operator of $s l_{2}(\mathbb{C})$ is

$$
\Omega=h^{2}+2 f e+2 e f \in M a t_{2}(\mathbb{C})
$$

Deduce, that Ω is a scalar multiple of I_{2}.
Solution: Set $\mathcal{B}=(e, h, f)$, where

$$
e=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], h=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], f=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

b) We have

$$
\begin{aligned}
& {[\operatorname{ad}(e)]_{\mathcal{B}}=\left[[\operatorname{ad}(e)(e)]_{\mathcal{B}}[\operatorname{ad}(e)(h)]_{\mathcal{B}}[\operatorname{ad}(e)(f)]_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
0 & -2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \stackrel{\text { def }}{=} E,} \\
& {[\operatorname{ad}(f)]_{\mathcal{B}}=\left[[\operatorname{ad}(f)(e)]_{\mathcal{B}}[\operatorname{ad}(f)(h)]_{\mathcal{B}}[\operatorname{ad}(f)(f)]_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right] \stackrel{\text { def }}{=} F,} \\
& {[\operatorname{ad}(h)]_{\mathcal{B}}=\left[[\operatorname{ad}(h)(e)]_{\mathcal{B}}[\operatorname{ad}(h)(h)]_{\mathcal{B}}[\operatorname{ad}(h)(f)]_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right] \stackrel{\text { def }}{=} H .}
\end{aligned}
$$

c) i) This is exactly the same proof as in the previous problem.
ii) Consider the matrix

$$
[B]_{\mathcal{B}}=\left[b_{i j}\right], \quad \text { where } b_{i j}=B(i, j), i, j \in\{e, h, f\} .
$$

Then, we have

$$
\begin{aligned}
& B(e, e)=\operatorname{tr}(E E)=0, B(e, h)=\operatorname{tr}(E H)=0, B(e, f)=\operatorname{tr}(E F)=4 \\
& B(h, h)=\operatorname{tr}(H H)=8, B(h, f)=\operatorname{tr}(H F)=0, B(f, f)=\operatorname{tr}(F F)=0
\end{aligned}
$$

Hence, we have

$$
[B]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 0 & 4 \\
0 & 8 & 0 \\
4 & 0 & 0
\end{array}\right]
$$

Therefore, as this matrix is invertible then we have that B is nondegenerate.
iii) Proceeding as above, we want to find M_{e}, M_{h}, M_{f} such that

$$
B\left(i, M_{j}\right)=\left\{\begin{array}{ll}
1, & i=j \\
0, & i \neq j .
\end{array} \quad \text { Here we have } i, j \in\{e, h, f\}\right.
$$

This is the same as determining $\left[M_{e}\right]_{\mathcal{B}}=\left[\begin{array}{l}a_{e e} \\ a_{e h} \\ a_{e f}\end{array}\right]$ such that

$$
[i]_{\mathcal{B}}[B]_{\mathcal{B}}\left[\begin{array}{c}
a_{e e} \\
a_{e h} \\
a_{e f}
\end{array}\right]=\left\{\begin{array}{l}
1, i=e \\
0, i \neq e
\end{array} \quad \text { where we assume } i \in\{e, f, h\}\right.
$$

Then, as $[e]_{\mathcal{B}}=e_{1},[h]_{\mathcal{B}}=e_{2},[f]_{\mathcal{B}}=e_{3}$ we use the above conditions to show that

$$
\left[M_{e}\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
0 \\
\frac{1}{4}
\end{array}\right],
$$

so that

$$
M_{e}=\frac{1}{4} f .
$$

Similarly, we find that

$$
M_{h}=\frac{1}{8} h, M_{f}=\frac{1}{4} e .
$$

d) Hence,

$$
\Omega=\frac{1}{8}\left(2 e f+h^{2}+2 f e\right)=\frac{1}{8}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]\right)=\frac{3}{8} I_{2} .
$$

