
Math 110, Summer 2012 Long Homework 4 (SOME) SOLUTIONS
Due Wednesday 7/25, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Please write your answers in complete English sentences (where applicable). Make your arguments
rigorous - if something is ‘obvious’, state why this is the case. Full credit will be awarded to those
solutions that are complete and answer the question posed in a coherent manner.

1. In this problem you will show that the nilpotent matrices with one Jordan block are the regular
nilpotent matrices - this means that the nilpotent class of such matrices is the ‘largest’.

Given A ∈ Matn(C) we denote its similarity class by

O(A) = {B ∈ Matn(C) | A is similar to B}.

a) Given A ∈ Matn(C) we define the commutator of A to be

C (A) = {B ∈ Matn(C) | AB = BA}.

.

i) Show that C (A) ⊂ Matn(C) is a subspace, for any A ∈ Matn(C).

ii) Suppose that A and B are similar. Fix P ∈ GLn(C) such that P−1AP = B. Show that, for
every invertible X ∈ C (A), Q−1AQ = B where Q = XP.

iii) Let Q ∈ Matn(C) be such that Q−1AQ = B. Show that there is some invertible Y ∈ C (A)
such that Q = YP.

iv) Deduce that for every ordered basis C ⊂ Cn such that [TA]C = B we can associate a unique
invertible matrix X (C) ∈ C (A) such that PS←C = X (C)P. (Hint: consider Corollary 1.7.7.)

Therefore, we have a defined a function

θ : {C ⊂ Cn | [TA]C = B} → C (A) ∩ GLn(C) ; C 7→ X (C)

v) Show that θ is bijective. (Hint: for surjectivity use Corollary 1.7.7.)

Solution:

i) Fix A ∈ Matn(C). Let X ,Y ∈ C (A),λ,µ ∈ C. Then, we have

A(λX + µY ) = λAX + µAY = λXA + µYA = (λX + µY )A.

Hence, C (A) is a subspace of Matn(C).

ii) We fix P such that
P−1AP = B.

Let X ∈ C (A) be invertible. Then,

(XP)−1A(XP) = P−1X−1AXP = P−1X−1XAP = P−1AP = B.

iii) Suppose that
Q−1AQ = B.

Then, we must have
Q−1AQ = P−1AP =⇒ PQ−1AQP−1 = A,

so that Y = QP−1 ∈ C (A). It is easy to see that YP = QP−1P = Q.



iv) Let C ⊂ Cn be an ordered basis such that [TA]C = B. Thus, we have

PC←SAPS←C = B.

Let Q = PS←C and X (C) = QP−1. Then,

X (C)−1AX (C) = PQ−1AQP−1 = PBP−1 = A,

so that X (C) ∈ C (A). Moreover, we have that X (C)P = Q = PS←C . Suppose that X ′ ∈ C (A)
is another invertible matrix such that

X ′P = PS←C = X (C)P.

Then, we must have X ′ = X (C), so that X (C) ∈ C (A) is the unique such matrix with the property
that X (C)P = PS←C .

v) We have defined the function

θ : {C ⊂ Cn | [TA]C = B} → C (A) ∩ GLn(C) ; C 7→ X (C).

Let X ∈ C (A) be invertible. Then, consider the basis C = (c1, ... , cn) ⊂ Cn where

XP = [c1 · · · cn] ∈ GLn(C).

Since XP is invertible then its columns form a basis. Now, we need to show that [TA]C = B:
indeed, we have

[TA]C = PC←SAPS←C = (XP)−1A(XP),

since XP = PS←C , by definition. Then,

(XP)−1A(XP) = P−1X−1AXP = P−1AP = B,

as X ∈ C (A). Thus, [TA]C = B. We still need to show that X (C) = X : this follows because
XP = PS←C and X (C) is the unique matrix such that this property holds. Hence, X = X (C).
Therefore, we have just shown that θ(C) = X , where C is the basis defined above, so that θ is
surjective.

To show that θ is injective we need to recall the definition of an injective function. Suppose that
θ(C) = θ(C′). Then, this means that

X (C) = X (C′) =⇒ PS←C = X (C)P = X (C′)P = PS←C′ .

As the columns of PS←B are precisely the vectors in B, for any ordered basis B (and in the correct
order), the above equality of matrices shows that C = C′. Hence, θ is injective.

We define the dimension of O(A) to be n2 − dimC C (A).1

1The reason for this definition is (roughly) because we can consider

O(A) = {Q−1AQ | Q ∈ GLn(C)}.

Thus, we can define a surjective function

α : GLn(C)→ O(A) ; Q 7→ Q−1AQ.

However, this function is not injective. In fact, for every B ∈ O(A) (say P−1AP = B) we have

α−1(B) = {Q ∈ GLn(C) | α(Q) = B} = {XP | X ∈ C(A)}.

You have just shown that there is a bijection
α−1(B)→ C(A),

for any B. Thus, we could consider the measure of ‘noninjectivity’ to be dimC C(A). Then, we can consider the dimension
of O(A) (= ‘imα’) to be dimGLn(C)− dimC(A). This is a sort of geometric Rank Theorem result.
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b) Consider Mat3(C). There are three distinct nilpotent classes (as there are three partitions of 3)
and any nilpotent A ∈ Mat3(C) is similar to precisely one of

N13 =

0 0 0
0 0 0
0 0 0

 , N12 =

0 1 0
0 0 0
0 0 0

 , N3 =

0 1 0
0 0 1
0 0 0

 .

i) Show that

C (N13 ) = Mat3(C), C (N12) =


a b c
d e f
g h i

 | d = f = g = 0, a = e

 ,

C (N3) =


a b c
d e f
g h i

 | d = g = h = 0, a = e = i , b = f

 =


a b c

0 a b
0 0 a

 | a, b, c ∈ C

 .

ii) Deduce that
dimC (N13 ) = 9, dimC (N12) = 5, dimC (N3) = 3,

and that O(N3) has the largest dimension.

Solution:

i) By definition

C (N13 ) = {B ∈ Mat3(C) | BN13 = N13B} = {B ∈ Mat3(C) | 03B = B03} = Mat3(C),

as 03B = 03 = B03, for any B ∈ Mat3(C).

By considering an arbitrary matrix

A =

a b c
d e f
g h i

 ∈ Mat3(C),

and the equality
AN12 = N12A,

you should find that

C (N12) =


a b c

0 a 0
0 d e

 | a, b, c , d , e ∈ C

 .

Similarly, we find that

C (N3) =


a b c

0 a b
0 0 a

 | a, b, c ∈ C

 .

ii) It is easy to see the corresponding dimensions by counting the number of free variables we
have describing each set. Hence, since

dimO(N3) = 9− dimC (Nπ),

for π a partition of 3, we see that dimO(N3) = 6 is the largest possible.
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We will now (partially) show that the results we have obtained for the case n = 3 hold in general
(ie, for every n we have dimO(Nn) is maximal).

The following result will be useful: let eij ∈ Matn(C) be the matrix with 0 everywhere except a 1
in the ij-entry. Then, we have

eijekl =

{
eil , if j = k,

0, otherwise.

You DO NOT have to show this.

c) Consider the nilpotent matrix Nn consisting of one 0-Jordan block. Thus, we have

Nn = e12 + e23 + ... + en−1,n =
n−1∑
j=1

ej ,j+1.

i) Show that, for 1 ≤ k , l ≤ n, we have

Nnekl − eklNn =


−e1,l+1, if k = 1, 1 ≤ l < n,

ek−1,n, if 1 < k ≤ n, l = n,

ek−1,l − ek,l+1, if k 6= 1, l 6= n,

0, if k = 1, l = n.

.

ii) Show that, for each i ∈ {0, ... , n − 1},

Wi
def
= spanC{Nnej ,j+i−ej ,j+iNn | j+i ≤ n and j ≥ 1} = spanC{ej ,j+i+1 | j+i+1 ≤ n and j ≥ 1}.

Deduce that dimWi = n − 1− i .

You have just shown that the i th diagonal2 of an arbitrary n × n matrix A is mapped onto
the (i + 1)st diagonal by the morphism ad(Nn), for i = 0, ... , n − 1.

iii) Show that, for each i ∈ {−1, ... ,−(n − 1)},

Wi = spanC{Nnej+|i|,j−ej+|i|,jNn | j+|i | ≤ n, j ≥ 1} = spanC{ej+|i|−1,j−ej+|i|,j+1 | j+|i |−1 ≤ n and j ≥ 1}.

Deduce that dimWi = n + i .

Hint: show that the set {ej+|i|−1,j − ej+|i|,j+1 | j + |i | ≤ n and j ≥ 1} is linearly independent.

You have just shown that the i th diagonal of an arbitrary n × n matrix A is mapped
injectively into the (i + 1)st diagonal by the morphism ad(Nn), for i = −1, ... ,−(n − 1).

iv) Consider the morphism

ad(Nn) : Matn(C)→ Matn(C) ; B 7→ NnB − BNn.

You have just determined the image of ad(Nn) in ii)-iii): we have (you DO NOT need to
justify this)

im ad(Nn) = W−(n−1) ⊕W−(n−2) ⊕ · · · ⊕W−1 ⊕W0 ⊕W1 ⊕ · · · ⊕Wn−1.

Deduce that dim ad(Nn) = n(n − 1) and, using the Rank Theorem, deduce that

dimC (Nn) = n.

(Hint: what is ker ad(Nn)? )

2We label the diagonals of an arbitrary n×n matrix as follows: the main diagonal is the 0th diagonal and the diagonals
to the right are labelled 1, ... , n − 1 as move we move from left to right. The diagonals to the left of the main diagonal
are labelled −1,−2, ... ,−(n − 1) as we move from right to left.
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In fact, it can be shown that

C (Nn) =




c1 c2 · · · cn

0 c1

...
...

. . . c2

0 · · · c1

 | c1, ... , cn ∈ C

 .

Solution:

i) We have
Nn = e12 + e23 + ... + en−1,n.

Using

ekleij =

{
ekj , l = i

0n, l 6= i ,

the given expressions are easily obtained. For example,

Nne1,l − e1,lNn = (e12 + ... + en−1,n)e1,l − e1,l(e12 + ... + en−1,n) = 0n − e1,l+1 = −e1,l+1.

The other equalities are similar.

ii) Let i ∈ {0, ... , n − 1}. Then,

Nnej ,j+i−ej ,j+iNn = (e12+...+en−1,n)ej ,j+i−ej ,j+i (e12+...+en−1,n) =


−e1,i+2, j = 1,

en−i−1,n, j = n − i ,

ej−1,j+i − ej ,j+i+1, 1 < j < n − i .

Denote
xj = Nnej ,j+i − ej ,j+iNn.

Then, using the results just obtained we have, for k = 1, ... , n − i − 1,

x1+...+xk = −e1,i+2+(e1,i+2−e2,i+3)+(e2,i+3−e3,i+4)+...+(ek−1,k+i−ek,k+i+1) = −ek,k+i+1.

Hence, we see that, for each k = 1, ... , n − i − 1,

ek,k+i+1 ∈ spanC{Nnej ,j+i − ej ,j+iNn | j + i ≤ n, j ≥ 1},

and these are precisely the basis vectors of diagonal (i + 1). Hence,

Wi = spanC{ej ,j+i+1 | 1 ≤ j ≤ n = i − 1}.

Since the set {ej ,j+i+1 | 1 ≤ j ≤ n − i − 1} is linearly independent, we have that

dimWi = n − i − 1.

iii) Let i ∈ {−1, ... ,−(n − 1)}. Then, for each j = 1, ... , n − |i |,

Nnej+|i|,j−ej+|i|,jNn = (e12+...+en−1,n)ej+|i|,j−ej+|i|,j(e12+...+en−1,n) = ej+|i|−1,j−ej+|i|,j+1,

so that
Wi = spanC{ej+|i|−1,j − ej+|i|,j+1 | 1 ≤ j ≤ n − |i |}.

Then, if we denote, for j = 1, ... , n − |i |,

yj = ej+|i|−1,j − ej+|i|,j+1,
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we have that {yj | 1 ≤ j ≤ n − |i |} is linearly independent: indeed, suppose that

λ1y1 + ... + λn−|i|yj = 0n,

then we have

0n = λ1(e|i|,1 − e|i|+1,2) + ... + λn−|i|(en−1,n−|i| − en,n−|i|+1)

= λ1e|i|,1 + (λ2 − λ1)e|i|+1,2 + ... + (λn−|i| − λn−|i|−1)en−1,n−|i| − λn−|i|en,n−|i|,

so that
λ1 = 0, (λ2 − λ1) = 0, ... , (λn−|i| − λn−|i|−1) = 0,λn−|i| = 0.

This implies that
λ1 = ... = λn−|i| = 0,

and {yj} is linearly independent. Hence, {yj} is a basis of Wi and

dimWi = n − |i | = n + i .

d) Now, suppose that π is a partition of n such that π 6= n. Then, consider the block diagonal matrix

Nπ =

J1

. . .

Jk

 ,

where each Ji ∈ Matni (C) is a 0-Jordan block. (So, we have π : n1 + n2 + ... + nk = n, where
n1 ≥ n2 ≥ ... ≥ nk > 0.

Define, for each i ,
mi = n1 + n2 + ... + ni , and m0 = 0.

Show that
ad(Nπ)(emi+1,mj ) = 0, for each i = 0, ... , k − 1 and j = 1, ... , k,

and deduce that dimC (Nπ) ≥ k2. In particular, if k2 ≥ n then

dimC (Nπ) ≥ dimC (Nn),

and
dimO(Nn) ≥ dimO(Nπ).

Solution: We have

Nπ =e12 + ... + em1−1,m1 + em1+1,m1+2 + ... + em2−1,m2 + em2+1,m2+2 + ... + em3−1,m3

+ ... + emk−1+1,mk−1+2 + ... + emk−1,mk
,

whenever this sum makes sense (ie if ni = ni+1 = ... = nk = 1 then the expression stops at
emi−1−1,mi−1 ).

Then, it is now straightforward to check that

Nπemi+1,mj − emi+1,mjNπ = 0n,

for each i = 0, ... , k − 1, j = 1, ... , k . Thus, we have found a linearly independent subset

{emi+1,mj | 1 ≤ j ≤ k, 0 ≤ i ≤ k − 1} ⊂ C (Nπ),

so that
dimC (Nπ) ≥ k2 = |{emi+1,mj | 1 ≤ j ≤ k, 0 ≤ i ≤ k − 1}|.
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