Math 110, Summer 2012 Long Homework 4 (SOME) SOLUTIONS

Due Wednesday 7/25, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. In this problem you will show that the nilpotent matrices with one Jordan block are the regular nilpotent matrices - this means that the nilpotent class of such matrices is the 'largest'.

Given $A \in \operatorname{Mat}_{n}(\mathbb{C})$ we denote its similarity class by

$$
\mathcal{O}(A)=\left\{B \in \operatorname{Mat}_{n}(\mathbb{C}) \mid A \text { is similar to } B\right\}
$$

a) Given $A \in \operatorname{Mat}_{n}(\mathbb{C})$ we define the commutator of A to be

$$
C(A)=\left\{B \in M a t_{n}(\mathbb{C}) \mid A B=B A\right\}
$$

i) Show that $C(A) \subset \operatorname{Mat}_{n}(\mathbb{C})$ is a subspace, for any $A \in \operatorname{Mat}_{n}(\mathbb{C})$.
ii) Suppose that A and B are similar. Fix $P \in \mathrm{GL}_{n}(\mathbb{C})$ such that $P^{-1} A P=B$. Show that, for every invertible $X \in C(A), Q^{-1} A Q=B$ where $Q=X P$.
iii) Let $Q \in \operatorname{Mat}_{n}(\mathbb{C})$ be such that $Q^{-1} A Q=B$. Show that there is some invertible $Y \in C(A)$ such that $Q=Y P$.
iv) Deduce that for every ordered basis $\mathcal{C} \subset \mathbb{C}^{n}$ such that $\left[T_{A}\right]_{\mathcal{C}}=B$ we can associate a unique invertible matrix $X(\mathcal{C}) \in C(A)$ such that $P_{\mathcal{S} \leftarrow \mathcal{C}}=X(\mathcal{C}) P$. (Hint: consider Corollary 1.7.7.)

Therefore, we have a defined a function

$$
\theta:\left\{\mathcal{C} \subset \mathbb{C}^{n} \mid\left[T_{A}\right]_{\mathcal{C}}=B\right\} \rightarrow C(A) \cap \mathrm{GL}_{n}(\mathbb{C}) ; \mathcal{C} \mapsto X(\mathcal{C})
$$

v) Show that θ is bijective. (Hint: for surjectivity use Corollary 1.7.7.)

Solution:

i) Fix $A \in \operatorname{Mat}_{n}(\mathbb{C})$. Let $X, Y \in C(A), \lambda, \mu \in \mathbb{C}$. Then, we have

$$
A(\lambda X+\mu Y)=\lambda A X+\mu A Y=\lambda X A+\mu Y A=(\lambda X+\mu Y) A
$$

Hence, $C(A)$ is a subspace of $\operatorname{Mat}_{n}(\mathbb{C})$.
ii) We fix P such that

$$
P^{-1} A P=B .
$$

Let $X \in C(A)$ be invertible. Then,

$$
(X P)^{-1} A(X P)=P^{-1} X^{-1} A X P=P^{-1} X^{-1} X A P=P^{-1} A P=B
$$

iii) Suppose that

$$
Q^{-1} A Q=B
$$

Then, we must have

$$
Q^{-1} A Q=P^{-1} A P \Longrightarrow P Q^{-1} A Q P^{-1}=A
$$

so that $Y=Q P^{-1} \in C(A)$. It is easy to see that $Y P=Q P^{-1} P=Q$.
iv) Let $\mathcal{C} \subset \mathbb{C}^{n}$ be an ordered basis such that $\left[T_{A}\right]_{\mathcal{C}}=B$. Thus, we have

$$
P_{\mathcal{C} \leftarrow \mathcal{S}} A P_{\mathcal{S} \leftarrow \mathcal{C}}=B
$$

Let $Q=P_{\mathcal{S} \leftarrow \mathcal{C}}$ and $X(\mathcal{C})=Q P^{-1}$. Then,

$$
X(\mathcal{C})^{-1} A X(\mathcal{C})=P Q^{-1} A Q P^{-1}=P B P^{-1}=A
$$

so that $X(\mathcal{C}) \in C(A)$. Moreover, we have that $X(\mathcal{C}) P=Q=P_{\mathcal{S} \leftarrow \mathcal{C}}$. Suppose that $X^{\prime} \in C(A)$ is another invertible matrix such that

$$
X^{\prime} P=P_{\mathcal{S} \leftarrow \mathcal{C}}=X(\mathcal{C}) P
$$

Then, we must have $X^{\prime}=X(\mathcal{C})$, so that $X(\mathcal{C}) \in C(A)$ is the unique such matrix with the property that $X(\mathcal{C}) P=P_{\mathcal{S} \leftarrow \mathcal{C}}$.
v) We have defined the function

$$
\theta:\left\{\mathcal{C} \subset \mathbb{C}^{n} \mid\left[T_{A}\right]_{\mathcal{C}}=B\right\} \rightarrow C(A) \cap \mathrm{GL}_{n}(\mathbb{C}) ; \mathcal{C} \mapsto X(\mathcal{C})
$$

Let $X \in C(A)$ be invertible. Then, consider the basis $\mathcal{C}=\left(c_{1}, \ldots, c_{n}\right) \subset \mathbb{C}^{n}$ where

$$
X P=\left[\begin{array}{ccc}
c_{1} & \cdots & c_{n}
\end{array}\right] \in \mathrm{GL}_{n}(\mathbb{C})
$$

Since $X P$ is invertible then its columns form a basis. Now, we need to show that $\left[T_{A}\right]_{\mathcal{C}}=B$: indeed, we have

$$
\left[T_{A}\right]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{S}} A P_{\mathcal{S} \leftarrow \mathcal{C}}=(X P)^{-1} A(X P)
$$

since $X P=P_{\mathcal{S} \leftarrow \mathcal{C}}$, by definition. Then,

$$
(X P)^{-1} A(X P)=P^{-1} X^{-1} A X P=P^{-1} A P=B
$$

as $X \in C(A)$. Thus, $\left[T_{A}\right]_{\mathcal{C}}=B$. We still need to show that $X(\mathcal{C})=X$: this follows because $X P=P_{\mathcal{S} \leftarrow \mathcal{C}}$ and $X(\mathcal{C})$ is the unique matrix such that this property holds. Hence, $X=X(\mathcal{C})$. Therefore, we have just shown that $\theta(\mathcal{C})=X$, where \mathcal{C} is the basis defined above, so that θ is surjective.

To show that θ is injective we need to recall the definition of an injective function. Suppose that $\theta(\mathcal{C})=\theta\left(\mathcal{C}^{\prime}\right)$. Then, this means that

$$
X(\mathcal{C})=X\left(\mathcal{C}^{\prime}\right) \Longrightarrow P_{\mathcal{S} \leftarrow \mathcal{C}}=X(\mathcal{C}) P=X\left(\mathcal{C}^{\prime}\right) P=P_{\mathcal{S} \leftarrow \mathcal{C}^{\prime}}
$$

As the columns of $P_{\mathcal{S} \leftarrow \mathcal{B}}$ are precisely the vectors in \mathcal{B}, for any ordered basis \mathcal{B} (and in the correct order), the above equality of matrices shows that $\mathcal{C}=\mathcal{C}^{\prime}$. Hence, θ is injective.
We define the dimension of $\mathcal{O}(A)$ to be $n^{2}-\operatorname{dim}_{\mathbb{C}} C(A) .{ }^{1}$

$$
\begin{aligned}
& { }^{1} \text { The reason for this definition is (roughly) because we can consider } \\
& \qquad \mathcal{O}(A)=\left\{Q^{-1} A Q \mid Q \in \mathrm{GL}_{n}(\mathbb{C})\right\}
\end{aligned}
$$

Thus, we can define a surjective function

$$
\alpha: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathcal{O}(A) ; Q \mapsto Q^{-1} A Q
$$

However, this function is not injective. In fact, for every $B \in \mathcal{O}(A)$ (say $P^{-1} A P=B$) we have

$$
\alpha^{-1}(B)=\left\{Q \in \mathrm{GL}_{n}(\mathbb{C}) \mid \alpha(Q)=B\right\}=\{X P \mid X \in C(A)\}
$$

You have just shown that there is a bijection

$$
\alpha^{-1}(B) \rightarrow C(A)
$$

for any B. Thus, we could consider the measure of 'noninjectivity' to be $\operatorname{dim}_{\mathbb{C}} C(A)$. Then, we can consider the dimension of $\mathcal{O}(A)\left(=\right.$ 'im α ') to be $\operatorname{dim} G L_{n}(\mathbb{C})-\operatorname{dim} C(A)$. This is a sort of geometric Rank Theorem result.
b) Consider $\operatorname{Mat}_{3}(\mathbb{C})$. There are three distinct nilpotent classes (as there are three partitions of 3) and any nilpotent $A \in M a t_{3}(\mathbb{C})$ is similar to precisely one of

$$
N_{1^{3}}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], N_{12}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], N_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

i) Show that

$$
\begin{gathered}
C\left(N_{1^{3}}\right)=\text { Mat }_{3}(\mathbb{C}), C\left(N_{12}\right)=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \right\rvert\, d=f=g=0, a=e\right\}, \\
C\left(N_{3}\right)=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \right\rvert\, d=g=h=0, a=e=i, b=f\right\}=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{C}\right\} .
\end{gathered}
$$

ii) Deduce that

$$
\operatorname{dim} C\left(N_{1^{3}}\right)=9, \operatorname{dim} C\left(N_{12}\right)=5, \operatorname{dim} C\left(N_{3}\right)=3
$$

and that $\mathcal{O}\left(N_{3}\right)$ has the largest dimension.

Solution:

i) By definition

$$
C\left(N_{1^{3}}\right)=\left\{B \in \operatorname{Mat}_{3}(\mathbb{C}) \mid B N_{1^{3}}=N_{1^{3}} B\right\}=\left\{B \in \operatorname{Mat}_{3}(\mathbb{C}) \mid 0_{3} B=B 0_{3}\right\}=\operatorname{Mat}_{3}(\mathbb{C})
$$

as $0_{3} B=0_{3}=B 0_{3}$, for any $B \in \operatorname{Mat}_{3}(\mathbb{C})$.
By considering an arbitrary matrix

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \in \operatorname{Mat}_{3}(\mathbb{C})
$$

and the equality

$$
A N_{12}=N_{12} A,
$$

you should find that

$$
C\left(N_{12}\right)=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & a & 0 \\
0 & d & e
\end{array}\right] \right\rvert\, a, b, c, d, e \in \mathbb{C}\right\}
$$

Similarly, we find that

$$
C\left(N_{3}\right)=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{C}\right\}
$$

ii) It is easy to see the corresponding dimensions by counting the number of free variables we have describing each set. Hence, since

$$
\operatorname{dim} \mathcal{O}\left(N_{3}\right)=9-\operatorname{dim} C\left(N_{\pi}\right)
$$

for π a partition of 3 , we see that $\operatorname{dim} \mathcal{O}\left(N_{3}\right)=6$ is the largest possible.

We will now (partially) show that the results we have obtained for the case $n=3$ hold in general (ie, for every n we have $\operatorname{dim} \mathcal{O}\left(N_{n}\right)$ is maximal).

The following result will be useful: let $e_{i j} \in \operatorname{Mat}(\mathbb{C})$ be the matrix with 0 everywhere except a 1 in the ij-entry. Then, we have

$$
e_{i j} e_{k l}=\left\{\begin{array}{lc}
e_{i l}, & \text { if } j=k \\
0, & \text { otherwise }
\end{array}\right.
$$

You DO NOT have to show this.
c) Consider the nilpotent matrix N_{n} consisting of one 0 -Jordan block. Thus, we have

$$
N_{n}=e_{12}+e_{23}+\ldots+e_{n-1, n}=\sum_{j=1}^{n-1} e_{j, j+1}
$$

i) Show that, for $1 \leq k, I \leq n$, we have

$$
N_{n} e_{k l}-e_{k l} N_{n}=\left\{\begin{array}{l}
-e_{1, I+1}, \quad \text { if } k=1,1 \leq I<n \\
e_{k-1, n}, \quad \text { if } 1<k \leq n, I=n \\
e_{k-1, I}-e_{k, I+1}, \quad \text { if } k \neq 1, I \neq n \\
0, \quad \text { if } k=1, I=n
\end{array}\right.
$$

ii) Show that, for each $i \in\{0, \ldots, n-1\}$,

$$
W_{i} \stackrel{\text { def }}{=} \operatorname{span}_{\mathbb{C}}\left\{N_{n} e_{j, j+i}-e_{j, j+i} N_{n} \mid j+i \leq n \text { and } j \geq 1\right\}=\operatorname{span}_{\mathbb{C}}\left\{e_{j, j+i+1} \mid j+i+1 \leq n \text { and } j \geq 1\right\}
$$

Deduce that $\operatorname{dim} W_{i}=n-1-i$.
You have just shown that the $i^{\text {th }}$ diagonal ${ }^{2}$ of an arbitrary $n \times n$ matrix A is mapped onto the $(i+1)^{\text {st }}$ diagonal by the morphism $\operatorname{ad}\left(N_{n}\right)$, for $i=0, \ldots, n-1$.
iii) Show that, for each $i \in\{-1, \ldots,-(n-1)\}$,
$W_{i}=\operatorname{span}_{\mathbb{C}}\left\{N_{n} e_{j+|i|, j}-e_{j+|i|, j} N_{n}|j+|i| \leq n, j \geq 1\}=\operatorname{span}_{\mathbb{C}}\left\{e_{j+|i|-1, j}-e_{j+|i|, j+1}|j+|i|-1 \leq n\right.\right.$ and $j \geq 1\}$.
Deduce that $\operatorname{dim} W_{i}=n+i$.
Hint: show that the set $\left\{e_{j+|i|-1, j}-e_{j+|i|, j+1}|j+|i| \leq n\right.$ and $j \geq 1\}$ is linearly independent.
You have just shown that the $i^{\text {th }}$ diagonal of an arbitrary $n \times n$ matrix A is mapped injectively into the $(i+1)^{s t}$ diagonal by the morphism ad $\left(N_{n}\right)$, for $i=-1, \ldots,-(n-1)$.
iv) Consider the morphism

$$
\operatorname{ad}\left(N_{n}\right): \operatorname{Mat}_{n}(\mathbb{C}) \rightarrow \operatorname{Mat}_{n}(\mathbb{C}) ; B \mapsto N_{n} B-B N_{n} .
$$

You have just determined the image of $\operatorname{ad}\left(N_{n}\right)$ in ii)-iii): we have (you DO NOT need to justify this)

$$
\operatorname{im} \operatorname{ad}\left(N_{n}\right)=W_{-(n-1)} \oplus W_{-(n-2)} \oplus \cdots \oplus W_{-1} \oplus W_{0} \oplus W_{1} \oplus \cdots \oplus W_{n-1}
$$

Deduce that $\operatorname{dim} \operatorname{ad}\left(N_{n}\right)=n(n-1)$ and, using the Rank Theorem, deduce that

$$
\operatorname{dim} C\left(N_{n}\right)=n
$$

(Hint: what is $\operatorname{ker} \operatorname{ad}\left(N_{n}\right)$?)

[^0]In fact, it can be shown that

$$
C\left(N_{n}\right)=\left\{\left.\left[\begin{array}{cccc}
c_{1} & c_{2} & \cdots & c_{n} \\
0 & c_{1} & & \vdots \\
\vdots & & \ddots & c_{2} \\
0 & \cdots & & c_{1}
\end{array}\right] \right\rvert\, c_{1}, \ldots, c_{n} \in \mathbb{C}\right\}
$$

Solution:

i) We have

$$
N_{n}=e_{12}+e_{23}+\ldots+e_{n-1, n}
$$

Using

$$
e_{k l} e_{i j}=\left\{\begin{array}{l}
e_{k j}, \quad l=i \\
0_{n}, \quad l \neq i,
\end{array}\right.
$$

the given expressions are easily obtained. For example,

$$
N_{n} e_{1, I}-e_{1, I} N_{n}=\left(e_{12}+\ldots+e_{n-1, n}\right) e_{1, I}-e_{1, I}\left(e_{12}+\ldots+e_{n-1, n}\right)=0_{n}-e_{1, I+1}=-e_{1, I+1}
$$

The other equalities are similar.
ii) Let $i \in\{0, \ldots, n-1\}$. Then,

$$
N_{n} e_{j, j+i}-e_{j, j+i} N_{n}=\left(e_{12}+\ldots+e_{n-1, n}\right) e_{j, j+i}-e_{j, j+i}\left(e_{12}+\ldots+e_{n-1, n}\right)=\left\{\begin{array}{l}
-e_{1, i+2}, j=1 \\
e_{n-i-1, n}, j=n-i \\
e_{j-1, j+i}-e_{j, j+i+1}, 1<j<n-i
\end{array}\right.
$$

Denote

$$
x_{j}=N_{n} e_{j, j+i}-e_{j, j+i} N_{n}
$$

Then, using the results just obtained we have, for $k=1, \ldots, n-i-1$,

$$
x_{1}+\ldots+x_{k}=-e_{1, i+2}+\left(e_{1, i+2}-e_{2, i+3}\right)+\left(e_{2, i+3}-e_{3, i+4}\right)+\ldots+\left(e_{k-1, k+i}-e_{k, k+i+1}\right)=-e_{k, k+i+1} .
$$

Hence, we see that, for each $k=1, \ldots, n-i-1$,

$$
e_{k, k+i+1} \in \operatorname{span}_{\mathbb{C}}\left\{N_{n} e_{j, j+i}-e_{j, j+i} N_{n} \mid j+i \leq n, j \geq 1\right\}
$$

and these are precisely the basis vectors of diagonal $(i+1)$. Hence,

$$
W_{i}=\operatorname{span}_{\mathbb{C}}\left\{e_{j, j+i+1} \mid 1 \leq j \leq n=i-1\right\}
$$

Since the set $\left\{e_{j, j+i+1} \mid 1 \leq j \leq n-i-1\right\}$ is linearly independent, we have that

$$
\operatorname{dim} W_{i}=n-i-1
$$

iii) Let $i \in\{-1, \ldots,-(n-1)\}$. Then, for each $j=1, \ldots, n-|i|$,

$$
N_{n} e_{j+|i|, j}-e_{j+|i|, j} N_{n}=\left(e_{12}+\ldots+e_{n-1, n}\right) e_{j+|i|, j}-e_{j+|i|, j}\left(e_{12}+\ldots+e_{n-1, n}\right)=e_{j+|i|-1, j}-e_{j+|i|, j+1}
$$

so that

$$
W_{i}=\operatorname{span}_{\mathbb{C}}\left\{e_{j+|i|-1, j}-e_{j+|i|, j+1}|1 \leq j \leq n-|i|\}\right.
$$

Then, if we denote, for $j=1, \ldots, n-|i|$,

$$
y_{j}=e_{j+|i|-1, j}-e_{j+|i|, j+1}
$$

we have that $\left\{y_{j}|1 \leq j \leq n-|i|\}\right.$ is linearly independent: indeed, suppose that

$$
\lambda_{1} y_{1}+\ldots+\lambda_{n-|i|} y_{j}=0_{n}
$$

then we have

$$
\begin{aligned}
0_{n} & =\lambda_{1}\left(e_{|i|, 1}-e_{|i|+1,2}\right)+\ldots+\lambda_{n-|i|}\left(e_{n-1, n-|i|}-e_{n, n-|i|+1}\right) \\
& =\lambda_{1} e_{|i|, 1}+\left(\lambda_{2}-\lambda_{1}\right) e_{|i|+1,2}+\ldots+\left(\lambda_{n-|i|}-\lambda_{n-|i|-1}\right) e_{n-1, n-|i|}-\lambda_{n-|i|} e_{n, n-|i|}
\end{aligned}
$$

so that

$$
\lambda_{1}=0,\left(\lambda_{2}-\lambda_{1}\right)=0, \ldots,\left(\lambda_{n-|i|}-\lambda_{n-|i|-1}\right)=0, \lambda_{n-|i|}=0 .
$$

This implies that

$$
\lambda_{1}=\ldots=\lambda_{n-|i|}=0
$$

and $\left\{y_{j}\right\}$ is linearly independent. Hence, $\left\{y_{j}\right\}$ is a basis of W_{i} and

$$
\operatorname{dim} W_{i}=n-|i|=n+i
$$

d) Now, suppose that π is a partition of n such that $\pi \neq n$. Then, consider the block diagonal matrix

$$
N_{\pi}=\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{k}
\end{array}\right]
$$

where each $J_{i} \in \operatorname{Mat}_{n_{i}}(\mathbb{C})$ is a 0 -Jordan block. (So, we have $\pi: n_{1}+n_{2}+\ldots+n_{k}=n$, where $n_{1} \geq n_{2} \geq \ldots \geq n_{k}>0$.

Define, for each i,

$$
m_{i}=n_{1}+n_{2}+\ldots+n_{i}, \quad \text { and } m_{0}=0
$$

Show that

$$
\operatorname{ad}\left(N_{\pi}\right)\left(e_{m_{i}+1, m_{j}}\right)=0, \text { for each } i=0, \ldots, k-1 \text { and } j=1, \ldots, k
$$

and deduce that $\operatorname{dim} C\left(N_{\pi}\right) \geq k^{2}$. In particular, if $k^{2} \geq n$ then

$$
\operatorname{dim} C\left(N_{\pi}\right) \geq \operatorname{dim} C\left(N_{n}\right)
$$

and

$$
\operatorname{dim} \mathcal{O}\left(N_{n}\right) \geq \operatorname{dim} \mathcal{O}\left(N_{\pi}\right)
$$

Solution: We have

$$
\begin{aligned}
N_{\pi}= & e_{12}+\ldots+e_{m_{1}-1, m_{1}}+e_{m_{1}+1, m_{1}+2}+\ldots+e_{m_{2}-1, m_{2}}+e_{m_{2}+1, m_{2}+2}+\ldots+e_{m_{3}-1, m_{3}} \\
& +\ldots+e_{m_{k-1}+1, m_{k-1}+2}+\ldots+e_{m_{k}-1, m_{k}}
\end{aligned}
$$

whenever this sum makes sense (ie if $n_{i}=n_{i+1}=\ldots=n_{k}=1$ then the expression stops at $e_{m_{i-1}-1, m_{i-1}}$).

Then, it is now straightforward to check that

$$
N_{\pi} e_{m_{i}+1, m_{j}}-e_{m_{i}+1, m_{j}} N_{\pi}=0_{n}
$$

for each $i=0, \ldots, k-1, j=1, \ldots, k$. Thus, we have found a linearly independent subset

$$
\left\{e_{m_{i}+1, m_{j}} \mid 1 \leq j \leq k, 0 \leq i \leq k-1\right\} \subset C\left(N_{\pi}\right)
$$

so that

$$
\operatorname{dim} C\left(N_{\pi}\right) \geq k^{2}=\left|\left\{e_{m_{i}+1, m_{j}} \mid 1 \leq j \leq k, 0 \leq i \leq k-1\right\}\right|
$$

[^0]: ${ }^{2}$ We label the diagonals of an arbitrary $n \times n$ matrix as follows: the main diagonal is the $0^{t h}$ diagonal and the diagonals to the right are labelled $1, \ldots, n-1$ as move we move from left to right. The diagonals to the left of the main diagonal are labelled $-1,-2, \ldots,-(n-1)$ as we move from right to left.

