Math 110, Summer 2012 Long Homework 4

Due Wednesday 7/25, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. In this problem you will show that the nilpotent matrices with one Jordan block are the regular nilpotent matrices - this means that the nilpotent class of such matrices is the 'largest'.
Given $A \in \operatorname{Mat}_{n}(\mathbb{C})$ we denote its similarity class by

$$
\mathcal{O}(A)=\left\{B \in \operatorname{Mat}_{n}(\mathbb{C}) \mid A \text { is similar to } B\right\}
$$

a) Given $A \in \operatorname{Mat}_{n}(\mathbb{C})$ we define the commutator of A to be

$$
C(A)=\left\{B \in M a t_{n}(\mathbb{C}) \mid A B=B A\right\}
$$

i) Show that $C(A) \subset \operatorname{Mat}_{n}(\mathbb{C})$ is a subspace, for any $A \in \operatorname{Mat}_{n}(\mathbb{C})$.
ii) Suppose that A and B are similar. Fix $P \in \mathrm{GL}_{n}(\mathbb{C})$ such that $P^{-1} A P=B$. Show that, for every invertible $X \in C(A), Q^{-1} A Q=B$ where $Q=X P$.
iii) Let $Q \in \operatorname{Mat}_{n}(\mathbb{C})$ be such that $Q^{-1} A Q=B$. Show that there is some invertible $Y \in C(A)$ such that $Q=Y P$.
iv) Deduce that for every ordered basis $\mathcal{C} \subset \mathbb{C}^{n}$ such that $\left[T_{A}\right]_{\mathcal{C}}=B$ we can associate a unique invertible matrix $X(\mathcal{C}) \in C(A)$ such that $P_{\mathcal{S} \leftarrow \mathcal{C}}=X(\mathcal{C}) P$. (Hint: consider Corollary 1.7.7.)

Therefore, we have a defined a function

$$
\theta:\left\{\mathcal{C} \subset \mathbb{C}^{n} \mid\left[T_{A}\right]_{\mathcal{C}}=B\right\} \rightarrow C(A) \cap \mathrm{GL}_{n}(\mathbb{C}) ; \mathcal{C} \mapsto X(\mathcal{C})
$$

v) Show that θ is bijective. (Hint: for surjectivity use Corollary 1.7.7.)

We define the dimension of $\mathcal{O}(A)$ to be $n^{2}-\operatorname{dim}_{\mathbb{C}} C(A) .{ }^{1}$
b) Consider $\operatorname{Mat}_{3}(\mathbb{C})$. There are three distinct nilpotent classes (as there are three partitions of 3) and any nilpotent $A \in \operatorname{Mat}_{3}(\mathbb{C})$ is similar to precisely one of

$$
N_{1^{3}}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], N_{12}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], N_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

i) Show that

$$
C\left(N_{1^{3}}\right)=\operatorname{Mat}_{3}(\mathbb{C}), C\left(N_{12}\right)=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \right\rvert\, d=f=g=0, a=e\right\}
$$

$$
\begin{aligned}
& { }^{1} \text { The reason for this definition is (roughly) because we can consider } \\
& \qquad \mathcal{O}(A)=\left\{Q^{-1} A Q \mid Q \in \mathrm{GL}_{n}(\mathbb{C})\right\} .
\end{aligned}
$$

Thus, we can define a surjective function

$$
\alpha: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathcal{O}(A) ; Q \mapsto Q^{-1} A Q
$$

However, this function is not injective. In fact, for every $B \in \mathcal{O}(A)$ (say $P^{-1} A P=B$) we have

$$
\alpha^{-1}(B)=\left\{Q \in \mathrm{GL}_{n}(\mathbb{C}) \mid \alpha(Q)=B\right\}=\{X P \mid X \in C(A)\}
$$

You have just shown that there is a bijection

$$
\alpha^{-1}(B) \rightarrow C(A)
$$

for any B. Thus, we could consider the measure of 'noninjectivity' to be $\operatorname{dim}_{\mathbb{C}} C(A)$. Then, we can consider the dimension of $\mathcal{O}(A)\left(=\right.$ 'im α ') to be $\operatorname{dim} G L_{n}(\mathbb{C})-\operatorname{dim} C(A)$. This is a sort of geometric Rank Theorem result.

$$
C\left(N_{3}\right)=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \right\rvert\, d=g=h=0, a=e=i, b=f\right\}=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{C}\right\}
$$

ii) Deduce that

$$
\operatorname{dim} C\left(N_{1^{3}}\right)=9, \operatorname{dim} C\left(N_{12}\right)=5, \operatorname{dim} C\left(N_{3}\right)=3,
$$

and that $\mathcal{O}\left(N_{3}\right)$ has the largest dimension.
We will now (partially) show that the results we have obtained for the case $n=3$ hold in general (ie, for every n we have $\operatorname{dim} \mathcal{O}\left(N_{n}\right)$ is maximal).

The following result will be useful: let $e_{i j} \in \operatorname{Mat}_{n}(\mathbb{C})$ be the matrix with 0 everywhere except a 1 in the ij-entry. Then, we have

$$
e_{i j} e_{k l}=\left\{\begin{array}{lc}
e_{i l}, & \text { if } j=k \\
0, & \text { otherwise }
\end{array}\right.
$$

You DO NOT have to show this.
c) Consider the nilpotent matrix N_{n} consisting of one 0 -Jordan block. Thus, we have

$$
N_{n}=e_{12}+e_{23}+\ldots+e_{n-1, n}=\sum_{j=1}^{n-1} e_{j, j+1} .
$$

i) Show that, for $1 \leq k, I \leq n$, we have

$$
N_{n} e_{k l}-e_{k l} N_{n}=\left\{\begin{array}{l}
-e_{1, I+1}, \quad \text { if } k=1,1 \leq I<n \\
e_{k-1, n}, \quad \text { if } 1<k \leq n, I=n \\
e_{k-1, I}-e_{k, I+1}, \quad \text { if } k \neq 1, I \neq n \\
0, \quad \text { if } k=1, I=n
\end{array}\right.
$$

ii) Show that, for each $i \in\{0, \ldots, n-1\}$,

$$
W_{i} \stackrel{\text { def }}{=} \operatorname{span}_{\mathbb{C}}\left\{N_{n} e_{j, j+i}-e_{j, j+i} N_{n} \mid j+i \leq n \text { and } j \geq 1\right\}=\operatorname{span}_{\mathbb{C}}\left\{e_{j, j+i+1} \mid j+i+1 \leq n \text { and } j \geq 1\right\}
$$

Deduce that $\operatorname{dim} W_{i}=n-1-i$.
You have just shown that the $i^{\text {th }}$ diagona ${ }^{2}$ of an arbitrary $n \times n$ matrix A is mapped onto the $(i+1)^{\text {st }}$ diagonal by the morphism ad $\left(N_{n}\right)$, for $i=0, \ldots, n-1$.
iii) Show that, for each $i \in\{-1, \ldots,-(n-1)\}$,
$W_{i}=\operatorname{span}_{\mathbb{C}}\left\{N_{n} e_{j+|i|, j}-e_{j+|i|, j} N_{n}|j+|i| \leq n, j \geq 1\}=\operatorname{span}_{\mathbb{C}}\left\{e_{j+|i|-1, j}-e_{j+|i|, j+1}|j+|i|-1 \leq n\right.\right.$ and $j \geq 1\}$.
Deduce that $\operatorname{dim} W_{i}=n+i$.
Hint: show that the set $\left\{e_{j+|i|-1, j}-e_{j+|i|, j+1}|j+|i| \leq n\right.$ and $j \geq 1\}$ is linearly independent.
You have just shown that the $i^{\text {th }}$ diagonal of an arbitrary $n \times n$ matrix A is mapped injectively into the $(i+1)^{\text {st }}$ diagonal by the morphism ad $\left(N_{n}\right)$, for $i=-1, \ldots,-(n-1)$.
iv) Consider the morphism

$$
\operatorname{ad}\left(N_{n}\right): \operatorname{Mat}_{n}(\mathbb{C}) \rightarrow \operatorname{Mat}_{n}(\mathbb{C}) ; B \mapsto N_{n} B-B N_{n} .
$$

[^0]You have just determined the image of $\operatorname{ad}\left(N_{n}\right)$ in ii)-iii): we have (you DO NOT need to justify this)

$$
\operatorname{im} \operatorname{ad}\left(N_{n}\right)=W_{-(n-1)} \oplus W_{-(n-2)} \oplus \cdots \oplus W_{-1} \oplus W_{0} \oplus W_{1} \oplus \cdots \oplus W_{n-1}
$$

Deduce that $\operatorname{dim} \operatorname{ad}\left(N_{n}\right)=n(n-1)$ and, using the Rank Theorem, deduce that

$$
\operatorname{dim} C\left(N_{n}\right)=n
$$

(Hint: what is ker $\operatorname{ad}\left(N_{n}\right)$?)
In fact, it can be shown that

$$
C\left(N_{n}\right)=\left\{\left.\left[\begin{array}{cccc}
c_{1} & c_{2} & \cdots & c_{n} \\
0 & c_{1} & & \vdots \\
\vdots & & \ddots & c_{2} \\
0 & \cdots & & c_{1}
\end{array}\right] \right\rvert\, c_{1}, \ldots, c_{n} \in \mathbb{C}\right\}
$$

d) Now, suppose that π is a partition of n such that $\pi \neq n$. Then, consider the block diagonal matrix

$$
N_{\pi}=\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{k}
\end{array}\right]
$$

where each $J_{i} \in \operatorname{Mat}_{n_{i}}(\mathbb{C})$ is a 0 -Jordan block. (So, we have $\pi: n_{1}+n_{2}+\ldots+n_{k}=n$, where $n_{1} \geq n_{2} \geq \ldots \geq n_{k}>0$.

Define, for each i,

$$
m_{i}=n_{1}+n_{2}+\ldots+n_{i}, \quad \text { and } m_{0}=0
$$

Show that

$$
\operatorname{ad}\left(N_{\pi}\right)\left(e_{m_{i}+1, m_{j}}\right)=0, \text { for each } i=0, \ldots, k-1 \text { and } j=1, \ldots, k
$$

and deduce that $\operatorname{dim} C\left(N_{\pi}\right) \geq k^{2}$. In particular, if $k^{2} \geq n$ then

$$
\operatorname{dim} C\left(N_{\pi}\right) \geq \operatorname{dim} C\left(N_{n}\right)
$$

and

$$
\operatorname{dim} \mathcal{O}\left(N_{n}\right) \geq \operatorname{dim} \mathcal{O}\left(N_{\pi}\right)
$$

[^0]: ${ }^{2}$ We label the diagonals of an arbitrary $n \times n$ matrix as follows: the main diagonal is the $0^{t h}$ diagonal and the diagonals to the right are labelled $1, \ldots, n-1$ as move we move from left to right. The diagonals to the left of the main diagonal are labelled $-1,-2, \ldots,-(n-1)$ as we move from right to left.

