Math 110, Summer 2012 Long Homework 3 (SOME) SOLUTIONS

Due Tuesday 7/10, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. In this problem you will prove that commuting diagonalisable matrices can be simultaneously diagonalised. ${ }^{1}$

Let $f, g \in \operatorname{End}_{\mathbb{C}}(V)$, where V is a finite dimensional \mathbb{C}-vector space.
a) Suppose that U is a g-invariant subspace of V. Let $E_{\mu_{i}}^{g}$ be the μ_{i}-eigenspace of g (so that μ_{i} is an eigenvalue of g). Show that

$$
\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U=\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

as follows:
i) Show that

$$
E_{\mu_{1}}^{g} \cap U+\ldots+E_{\mu_{k}}^{g} \cap U \subset\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U
$$

ii) If $W_{i}=E_{\mu_{i}}^{g} \cap U$ show that

$$
W_{i} \cap\left(\sum_{j \neq i} W_{j}\right)=\left\{0_{v}\right\}, \quad \text { for each } i
$$

Hence, we have

$$
E_{\mu_{1}}^{g} \cap U+\ldots+E_{\mu_{k}}^{g} \cap U=\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

Suppose that $u \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U$. Then, $u \in U$ and

$$
u=e_{1}+\ldots+e_{k}
$$

with $e_{i} \in E_{\mu_{i}}^{g}$. You are now going to show that $e_{i} \in U$, for each i, thereby showing that

$$
u \in\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

Let

$$
\Gamma_{1}=\left\{i \in\{1, \ldots, k\} \mid e_{i} \in U\right\}, \Gamma_{2}=\left\{i \in\{1, \ldots, k\} \mid e_{i} \notin U\right\}
$$

so that $\Gamma_{1} \cup \Gamma_{2}=\{1, \ldots, k\}$.
iii) Show that if $\Gamma_{2}=\varnothing$ then $u \in\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)$.
iv) Show that if $\Gamma_{2} \neq \varnothing$ then

$$
u-\sum_{j \in \Gamma_{1}} e_{j} \in U
$$

Deduce that if $\Gamma_{2} \neq \varnothing$ then there is some nonzero $w \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U$, such that

$$
w=e_{i_{1}}+\ldots+e_{i_{s}}, \text { with } e_{i_{j}} \in E_{\mu_{i_{j}}}^{g} \text { and } e_{i_{j}} \notin U
$$

[^0]with D_{i} diagonal, for every i.
v) Suppose $\Gamma_{2} \neq \varnothing$ and let
$$
\mathcal{L}=\left\{w \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U \mid w=e_{i_{1}}+\ldots+e_{i_{s}}, \quad \text { with } e_{i_{j}} \in E_{\mu_{i_{j}}}^{g} \text { and } e_{i_{j}} \notin U\right\} .
$$

By iv) we know that $\mathcal{L} \neq \varnothing$. Let $w \in \mathcal{L}$ with

$$
w=e_{i_{1}}+\ldots+e_{i_{s}} .
$$

Show that it is not possible for $s=1$. Deduce that we must have $s \geq 2$.
vi) Let $w \in \mathcal{L}$ with

$$
w=e_{i_{1}}+\ldots+e_{i_{s}},
$$

and such that s is minimal. Using v) deduce that there is some $j \in\{1, \ldots, s\}$ such that $e_{i j}$ is an eigenvector associated to a nonzero eigenvalue $\mu_{i_{j}}$ and show that

$$
g(w)-\mu_{i_{j}} w \in \mathcal{L} .
$$

Explain why we have contradicted the minimality condition for w.
vii) Explain why $\Gamma_{2}=\varnothing$ and deduce that

$$
\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U \subset\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right) .
$$

b) Deduce that if g admits a basis of eigenvectors then there is a basis of U (we are still assuming that U is g-invariant) consisting of eigenvectors of g. (Hint: Use that $E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}=V$ and a).)
c) Suppose that $f \circ g=g \circ f$ (we say that f and g commute). Let E_{λ}^{f} be the λ-eigenspace of f. Prove that E_{λ}^{f} is g-invariant. (Hint: You must show that if $v \in E_{\lambda}^{f}$ then $g(v) \in E_{\lambda}^{f}$.)
d) Deduce that if f and g commute and there exists a basis of V consisting of eigenvectors of g then there exists a basis of $E_{\lambda_{i}}^{f}$ consisting of eigenvectors of g, for every eigenvalue λ_{i} of f. (Hint: Use b) and c).)
e) Prove: if f and g commute and there exists two bases of V, one consisting of eigenvectors of f and the other consisting of eigenvectors of g, then there is a single basis of V consisting of eigenvectors of both f and g.
f) Prove: Let $A, B \in \operatorname{Mat}_{n}(\mathbb{C})$ such that $A B=B A$. Suppose that A and B are both diagonalisable. Then, there is an invertible matrix P such that

$$
P^{-1} A P=D_{1}, \quad P^{-1} B P=D_{2},
$$

with D_{i} a diagonal matrix. (Hint: This follows from e).)
g) Find an invertible matrix P such that

$$
P^{-1} A P=D_{1}, \quad P^{-1} B P=D_{2},
$$

with D_{i} diagonal, and where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{cc}
-1 & -4 \\
0 & 3
\end{array}\right] .
$$

(You do not need to show that $A B=B A$ or that A and B are diagonalisable - although you should be able to see that they are diagonalisable by looking at them.)

Solution:

a) i) Let $u \in E_{\mu_{1}}^{g} \cap U+\ldots+E_{\mu_{k}}^{g} \cap U$. Then,

$$
u=e_{1}+\ldots+e_{k}
$$

where $e_{i} \in E_{\mu_{i}}^{g} \cap U$, by definition of the sum of subspaces. Hence, each $e_{i} \in U$ since $E_{\mu_{i}}^{g} \cap U \subset U$, for each i, so that $u=e_{1}+\ldots+e_{k} \in U$ (U is a subspace). Moreover,

$$
u=e_{1}+\ldots+e_{k} \in E_{\mu_{1}}^{g}+\ldots+E_{\mu_{k}}^{g}
$$

as each $e_{i} \in E_{\mu_{i}}^{g} \cap U \subset E_{\mu_{i}}^{g}$. By a result obtained in class we have

$$
E_{\mu_{1}}^{g}+\ldots+E_{\mu_{k}}^{g}=E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}
$$

so that we have $u \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U$.
ii) Let $i \in\{1, \ldots, k\}$ and $x \in W_{i} \cap\left(\sum_{j \neq i} W_{j}\right.$. Then, $x \in W_{i}$ and

$$
x=\sum_{j \neq i} y_{j} \in \sum_{j \neq i} W_{j}
$$

So, if $x \neq 0_{V}$ then, for some $j \neq i$, we must have $y_{j} \neq 0_{v}$, so that

$$
x-\sum_{j \neq i} y_{j}=0 v
$$

is a nontrivial linear relation among $\{x\} \cup\left\{y_{j} \mid j \neq i\right\}$. However, since each of the elements in this set are eigenvectors for distinct eigenvalues then this set must be linearly independent so that it is not possible to have a nontrivial linear relation among these vectors. Hence, we must have $x=0 v$.
iii) Suppose that $\Gamma_{2}=\varnothing$. Then, for every $i \in\{1, \ldots, k\}$ we have $e_{i} \in U$ and $e_{i} \in E_{\mu_{i}}^{g}$. Hence, for every i, we have $e_{i} \in E_{\mu_{i}}^{g} \cap U$ so that

$$
u=e_{1}+\ldots+e_{k} \in\left(E_{\mu_{1}} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

iv) Suppose that $\Gamma_{2} \neq \varnothing$. Then, since $u \in U$ and $\sum_{j \in \Gamma_{1}} e_{j} \in U$ (because U is a subspace and each $e_{j} \in U$, when $j \in \Gamma_{1}$) we have

$$
u-\sum_{j \in \Gamma_{1}} e_{j} \in U
$$

Hence, if $\Gamma_{2} \neq \varnothing$ then there is some nonzero $w \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U$ satisfying the required conditions: namely,

$$
w=\sum_{j \in \Gamma_{2}} e_{j}
$$

v) Let $w \in \mathcal{L}$ be such that

$$
w=e_{i_{1}}+\ldots+e_{i_{s}}
$$

with $e_{i_{j}} \in E_{\mu_{i_{j}}}^{g}$ but $e_{i_{j}} \notin U$. If $s=1$ then $w=e_{i_{1}} \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U$ so that $e_{i_{1}} \in U$. However, by the definition of \mathcal{L} and since $w \in \mathcal{L}$, we can't have $e_{i_{1}} \in U$. Hence, we must have $s \geq 2$.
vi) Let $w \in \mathcal{L}$ so that

$$
w=e_{i_{1}}+\ldots+e_{i_{s}},
$$

with $e_{i_{j}} \in E_{\mu_{j}}^{g}$ and $e_{i_{j}} \notin U$, for each j. Suppose that s is minimal. By v) we know that $s \geq 2$ so that, since each $e_{i_{j}}$ is an eigenvector for a distinct eigenvalue, we must have
some $j \in\{1, \ldots, s\}$ such that $e_{i_{j}}$ is an eigenvector with nonzero associated eigenvalue (else, $w=e_{i_{1}} \in \mathcal{L}$ contradicting what we've shown in $\left.v\right)$). Now, we see that

$$
\begin{aligned}
g(w)-\mu_{i_{j}} w & =g\left(e_{i_{1}}+\ldots+e_{i_{s}}\right)-\mu_{i_{j}}\left(e_{i_{1}}+\ldots+e_{i_{s}}\right) \\
& =g\left(e_{i_{1}}\right)+\ldots+g\left(e_{i_{s}}\right)-\mu_{i_{j}}\left(e_{i_{1}}+\ldots+e_{i_{s}}\right) \\
& =\mu_{i_{1}} e_{i_{1}}+\ldots+\mu_{i_{s}} e_{i_{s}}-\mu_{i_{j}}\left(e_{i_{1}}+\ldots+e_{i_{s}}\right) \\
& =\left(\mu_{i_{1}}-\mu_{i_{j}}\right) e_{i_{1}}+\ldots+\left(\mu_{i_{j-1}}-\mu_{i_{j}}\right) e_{i_{j-1}}+0 v+\left(\mu_{i_{j+1}}-\mu_{i_{j}}\right) e_{i_{j+1}}+\ldots+\left(\mu_{i_{s}}-\mu_{i_{j}}\right) e_{i_{s}} .
\end{aligned}
$$

Since $\mu_{i_{r}} \neq \mu_{i_{t}}$, for $r \neq t$, we see that $f_{l}=\left(\mu_{i_{l}}-\mu_{i_{j}}\right) e_{i_{l}} \notin U$ (because if $f_{l} \in U$ then we could scale by $\left(\mu_{i_{l}}-\mu_{i_{j}}\right)^{-1}$ to obtain that $e_{i_{l}} \in U$, which is absurd as $e_{i_{l}}$ is assumed ti be not in $U)$. Hence,

$$
g(w)-\mu_{i_{j}} w \in \mathcal{L}
$$

However, $g(w)-w$ is a sum of $s-1$ vectors, contradicting the minimality condition of w.
vii) Hence, our initial assumption that $\Gamma_{2} \neq \varnothing$ must be false, so that $\Gamma_{2}=\varnothing$ and, by iii), we must have

$$
u \in\left(E_{\mu_{1}} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

The result follows.
b) If V admits a basis consisting of eigenvectors of g then we must have

$$
E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}=V
$$

Hence, by a), we have

$$
U=V \cap U=\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U=\left(E_{\mu_{1}} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

Thus, we find a basis \mathcal{B} of U by finding a basis \mathcal{B}_{i} (possibly empty) of each $E_{\mu_{i}}^{g} \cap U$ and since $E_{\mu_{i}}^{g} \cap U \subset E_{\mu_{i}}^{g}$ we have that \mathcal{B}_{i} consists of eigenvectors of g. Hence, there is a basis of U consisting of eigenvectors of g.
c) Let $v \in E_{\lambda}^{f}$, we want to show that $g(v) \in E_{\lambda}^{f}$, so that, if $g(v) \neq 0_{v}$, then $g(v)$ is an eigenvector of f with associated eigenvalue λ. Now,

$$
f(g(v))=g(f(v))=g(\lambda v)=\lambda g(v)
$$

so that $g(v) \in E_{\lambda}^{f}=\{w \in V \mid f(w)=\lambda w\}$.
d) By c) we see that, for every λ_{i}, we have $E_{\lambda_{i}}^{f}$ is g-invariant. Hence, by b) since there is a basis of V consisting of eigenvectors of g then we can find a basis of $E_{\lambda_{i}}^{f}$ consisting of eigenvectors of g, for every λ_{i}.
e) We just need to combine d) and the assumption that there is a basis of V consisting of eigenvectors of f. In this case, we must have

$$
E_{\lambda_{1}}^{f} \oplus \cdots \oplus E_{\lambda_{I}}^{f}=V
$$

By d) we can find a basis \mathcal{C}_{i} of each $E_{\lambda_{i}}^{f}$ consisting of eigenvectors of g. Since $\mathcal{C}_{i} \subset E_{\lambda_{i}}^{f}$ the vectors in \mathcal{C}_{i} are also eigenvectors of f. Since the above sum is direct, we have that

$$
\mathcal{C}=\mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{l}
$$

is a basis of V. Moreover, \mathcal{C} consists of eigenvectors of both f and g.
f) The assumptions on A, B allow us to apply e) to the morphisms $T_{A}, T_{B} \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{n}\right)$. We see that there is a simultaneous eigenbasis \mathcal{C} of both T_{A}, T_{B}. If $\mathcal{C}=\left(c_{1}, \ldots, c_{n}\right)$ then denoting

$$
P=\left[c_{1} \cdots c_{n}\right] \in G L_{n}(\mathbb{C})
$$

we have that

$$
P^{-1} A P=P_{\mathcal{C} \leftarrow \mathcal{S}^{(n)}}\left[T_{A}\right]_{\mathcal{S}^{(n)}} P_{\mathcal{S}^{(n)} \leftarrow \mathcal{C}}=\left[T_{A}\right]_{\mathcal{C}}=D_{1},
$$

and

$$
P^{-1} B P=P_{\mathcal{C} \leftarrow \mathcal{S}^{(n)}}\left[T_{B}\right]_{\mathcal{S}^{(n)}} P_{\mathcal{S}^{(n)} \leftarrow \mathcal{C}}=\left[T_{B}\right]_{\mathcal{C}}=D_{2},
$$

with both D_{1}, D_{2} diagonal.
g) The above theory tells us that in order to determine a simultaneous eigenbasis for A and B we must proceed as follows: each eigenspace E_{λ}^{A} of A is B-invariant so that B defines an endomorphism of E_{λ}^{A} (by c) above). We then have that this endomorphism is diagonalisable (this is d) above) so we need can find an eigenbasis for this endomorphism of E_{λ}^{A}. Then, we can use these eigenbases for each eigenspace of A to determine a simultaneous eigenbasis for both A and B.

We have that

$$
\chi_{A}(\lambda)=(2-\lambda)(1-\lambda)
$$

so that $\lambda_{1}=1, \lambda_{2}=2$ are the eigenvalues of A. Then, it is easy to see that

$$
E_{\lambda_{1}}=\operatorname{span}_{\mathbb{C}}\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}, E_{\lambda_{2}}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} .
$$

Thus, since each eigenspace of A has dimension 1 and is B-invariant, we must have that

$$
B\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \in E_{\lambda_{1}}, B\left[\begin{array}{l}
1 \\
0
\end{array}\right] \in E_{\lambda_{2}}
$$

This is also easy to verify directly. Hence, a simultaneous eigenbasis of A and B is

$$
\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

so that if we take

$$
P=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right]
$$

then we have

$$
P^{-1} A P=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], P^{-1} B P=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right] .
$$

[^0]: ${ }^{1}$ In fact, if we have a family $\left(A_{i}\right)$ of diagonalisable matrices, such that $A_{i} A_{j}=A_{j} A_{i}$, for every i, j, then there is a common eigenbasis of all of the A_{i} : this means there is a single matrix P such that

 $$
 P^{-1} A_{i} P=D_{i}
 $$

