
Math 110, Summer 2012 Long Homework 3 (SOME) SOLUTIONS
Due Tuesday 7/10, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

Please write your answers in complete English sentences (where applicable). Make your arguments
rigorous - if something is ‘obvious’, state why this is the case. Full credit will be awarded to those
solutions that are complete and answer the question posed in a coherent manner.

1. In this problem you will prove that commuting diagonalisable matrices can be simultaneously diago-
nalised.1

Let f , g ∈ EndC(V ), where V is a finite dimensional C-vector space.

a) Suppose that U is a g -invariant subspace of V . Let E g
µi

be the µi -eigenspace of g (so that µi is
an eigenvalue of g). Show that(

E g
µ1
⊕ · · · ⊕ E g

µk

)
∩ U = (E g

µ1
∩ U)⊕ · · · ⊕ (E g

µk
∩ U),

as follows:

i) Show that
E g
µ1
∩ U + ... + E g

µk
∩ U ⊂

(
E g
µ1
⊕ · · · ⊕ E g

µk

)
∩ U.

ii) If Wi = E g
µi
∩ U show that

Wi ∩ (
∑
j 6=i

Wj) = {0V }, for each i .

Hence, we have

E g
µ1
∩ U + ... + E g

µk
∩ U = (E g

µ1
∩ U)⊕ · · · ⊕ (E g

µk
∩ U).

Suppose that u ∈
(
E g
µ1
⊕ · · · ⊕ E g

µk

)
∩ U. Then, u ∈ U and

u = e1 + ... + ek ,

with ei ∈ E g
µi

. You are now going to show that ei ∈ U, for each i , thereby showing that

u ∈ (E g
µ1
∩ U)⊕ · · · ⊕ (E g

µk
∩ U).

Let
Γ1 = {i ∈ {1, ... , k} | ei ∈ U}, Γ2 = {i ∈ {1, ... , k} | ei /∈ U},

so that Γ1 ∪ Γ2 = {1, ... , k}.

iii) Show that if Γ2 = ∅ then u ∈ (E g
µ1
∩ U)⊕ · · · ⊕ (E g

µk
∩ U).

iv) Show that if Γ2 6= ∅ then

u −
∑
j∈Γ1

ej ∈ U.

Deduce that if Γ2 6= ∅ then there is some nonzero w ∈
(
E g
µ1
⊕ · · · ⊕ E g

µk

)
∩ U, such that

w = ei1 + ... + eis , with eij ∈ E g
µij

and eij /∈ U.

1In fact, if we have a family (Ai ) of diagonalisable matrices, such that AiAj = AjAi , for every i , j , then there is a
common eigenbasis of all of the Ai : this means there is a single matrix P such that

P−1AiP = Di ,

with Di diagonal, for every i .



v) Suppose Γ2 6= ∅ and let

L = {w ∈
(
E g
µ1
⊕ · · · ⊕ E g

µk

)
∩ U | w = ei1 + ... + eis , with eij ∈ E g

µij
and eij /∈ U}.

By iv) we know that L 6= ∅. Let w ∈ L with

w = ei1 + ... + eis .

Show that it is not possible for s = 1. Deduce that we must have s ≥ 2.

vi) Let w ∈ L with
w = ei1 + ... + eis ,

and such that s is minimal. Using v) deduce that there is some j ∈ {1, ... , s} such that eij
is an eigenvector associated to a nonzero eigenvalue µij and show that

g(w)− µijw ∈ L.

Explain why we have contradicted the minimality condition for w .

vii) Explain why Γ2 = ∅ and deduce that(
E g
µ1
⊕ · · · ⊕ E g

µk

)
∩ U ⊂ (E g

µ1
∩ U)⊕ · · · ⊕ (E g

µk
∩ U).

b) Deduce that if g admits a basis of eigenvectors then there is a basis of U (we are still assuming
that U is g -invariant) consisting of eigenvectors of g . (Hint: Use that E g

µ1
⊕ · · · ⊕ E g

µk
= V and

a).)

c) Suppose that f ◦ g = g ◦ f (we say that f and g commute). Let E f
λ be the λ-eigenspace of f .

Prove that E f
λ is g -invariant. (Hint: You must show that if v ∈ E f

λ then g(v) ∈ E f
λ.)

d) Deduce that if f and g commute and there exists a basis of V consisting of eigenvectors of g then
there exists a basis of E f

λi
consisting of eigenvectors of g , for every eigenvalue λi of f . (Hint: Use

b) and c).)

e) Prove: if f and g commute and there exists two bases of V , one consisting of eigenvectors of
f and the other consisting of eigenvectors of g , then there is a single basis of V consisting of
eigenvectors of both f and g .

f) Prove: Let A,B ∈ Matn(C) such that AB = BA. Suppose that A and B are both diagonalisable.
Then, there is an invertible matrix P such that

P−1AP = D1, P−1BP = D2,

with Di a diagonal matrix. (Hint: This follows from e).)

g) Find an invertible matrix P such that

P−1AP = D1, P−1BP = D2,

with Di diagonal, and where

A =

[
2 1
0 1

]
, B =

[
−1 −4
0 3

]
.

(You do not need to show that AB = BA or that A and B are diagonalisable - although you should
be able to see that they are diagonalisable by looking at them.)

Solution:
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a) i) Let u ∈ E g
µ1
∩ U + ... + E g

µk
∩ U. Then,

u = e1 + ... + ek ,

where ei ∈ E g
µi
∩ U, by definition of the sum of subspaces. Hence, each ei ∈ U since

E g
µi
∩ U ⊂ U, for each i , so that u = e1 + ... + ek ∈ U (U is a subspace). Moreover,

u = e1 + ... + ek ∈ E g
µ1

+ ... + E g
µk

,

as each ei ∈ E g
µi
∩ U ⊂ E g

µi
. By a result obtained in class we have

E g
µ1

+ ... + E g
µk

= E g
µ1
⊕ · · · ⊕ E g

µk
,

so that we have u ∈ (E g
µ1
⊕ · · · ⊕ E g

µk
) ∩ U.

ii) Let i ∈ {1, ... , k} and x ∈Wi ∩ (
∑

j 6=i Wj . Then, x ∈Wi and

x =
∑
j 6=i

yj ∈
∑
j 6=i

Wj .

So, if x 6= 0V then, for some j 6= i , we must have yj 6= 0V , so that

x −
∑
j 6=i

yj = 0V ,

is a nontrivial linear relation among {x} ∪ {yj | j 6= i}. However, since each of the elements
in this set are eigenvectors for distinct eigenvalues then this set must be linearly independent
so that it is not possible to have a nontrivial linear relation among these vectors. Hence, we
must have x = 0V .

iii) Suppose that Γ2 = ∅. Then, for every i ∈ {1, ... , k} we have ei ∈ U and ei ∈ E g
µi

. Hence,
for every i , we have ei ∈ E g

µi
∩ U so that

u = e1 + ... + ek ∈ (Eµ1 ∩ U)⊕ · · · ⊕ (E g
µk
∩ U).

iv) Suppose that Γ2 6= ∅. Then, since u ∈ U and
∑

j∈Γ1
ej ∈ U (because U is a subspace and

each ej ∈ U, when j ∈ Γ1) we have

u −
∑
j∈Γ1

ej ∈ U.

Hence, if Γ2 6= ∅ then there is some nonzero w ∈ (E g
µ1
⊕· · ·⊕E g

µk
)∩U satisfying the required

conditions: namely,

w =
∑
j∈Γ2

ej .

v) Let w ∈ L be such that
w = ei1 + ... + eis ,

with eij ∈ E g
µij

but eij /∈ U. If s = 1 then w = ei1 ∈ (E g
µ1
⊕ · · · ⊕ E g

µk
) ∩ U so that ei1 ∈ U.

However, by the definition of L and since w ∈ L, we can’t have ei1 ∈ U. Hence, we must
have s ≥ 2.

vi) Let w ∈ L so that
w = ei1 + ... + eis ,

with eij ∈ E g
µij

and eij /∈ U, for each j . Suppose that s is minimal. By v) we know that

s ≥ 2 so that, since each eij is an eigenvector for a distinct eigenvalue, we must have
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some j ∈ {1, ... , s} such that eij is an eigenvector with nonzero associated eigenvalue (else,
w = ei1 ∈ L contradicting what we’ve shown in v)). Now, we see that

g(w)− µijw = g(ei1 + ... + eis )− µij (ei1 + ... + eis )

= g(ei1 ) + ... + g(eis )− µij (ei1 + ... + eis )

= µi1ei1 + ... + µis eis − µij (ei1 + ... + eis )

= (µi1 − µij )ei1 + ... + (µij−1 − µij )eij−1 + 0V + (µij+1 − µij )eij+1 + ... + (µis − µij )eis .

Since µir 6= µit , for r 6= t, we see that fl = (µil −µij )eil /∈ U (because if fl ∈ U then we could
scale by (µil − µij )

−1 to obtain that eil ∈ U, which is absurd as eil is assumed ti be not in
U). Hence,

g(w)− µijw ∈ L.

However, g(w)− w is a sum of s − 1 vectors, contradicting the minimality condition of w .

vii) Hence, our initial assumption that Γ2 6= ∅ must be false, so that Γ2 = ∅ and, by iii), we
must have

u ∈ (Eµ1 ∩ U)⊕ · · · ⊕ (E g
µk
∩ U).

The result follows.

b) If V admits a basis consisting of eigenvectors of g then we must have

E g
µ1
⊕ · · · ⊕ E g

µk
= V .

Hence, by a), we have

U = V ∩ U = (E g
µ1
⊕ · · · ⊕ E g

µk
) ∩ U = (Eµ1 ∩ U)⊕ · · · ⊕ (E g

µk
∩ U).

Thus, we find a basis B of U by finding a basis Bi (possibly empty) of each E g
µi
∩ U and since

E g
µi
∩U ⊂ E g

µi
we have that Bi consists of eigenvectors of g . Hence, there is a basis of U consisting

of eigenvectors of g .

c) Let v ∈ E f
λ, we want to show that g(v) ∈ E f

λ, so that, if g(v) 6= 0V , then g(v) is an eigenvector
of f with associated eigenvalue λ. Now,

f (g(v)) = g(f (v)) = g(λv) = λg(v),

so that g(v) ∈ E f
λ = {w ∈ V | f (w) = λw}.

d) By c) we see that, for every λi , we have E f
λi

is g -invariant. Hence, by b) since there is a basis of

V consisting of eigenvectors of g then we can find a basis of E f
λi

consisting of eigenvectors of g ,
for every λi .

e) We just need to combine d) and the assumption that there is a basis of V consisting of eigenvectors
of f . In this case, we must have

E f
λ1
⊕ · · · ⊕ E f

λl
= V .

By d) we can find a basis Ci of each E f
λi

consisting of eigenvectors of g . Since Ci ⊂ E f
λi

the vectors
in Ci are also eigenvectors of f . Since the above sum is direct, we have that

C = C1 ∪ ... ∪ Cl ,

is a basis of V . Moreover, C consists of eigenvectors of both f and g .
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f) The assumptions on A,B allow us to apply e) to the morphisms TA,TB ∈ EndC(Cn). We see
that there is a simultaneous eigenbasis C of both TA,TB . If C = (c1, ... , cn) then denoting

P = [c1 · · · cn] ∈ GLn(C),

we have that
P−1AP = PC←S(n) [TA]S(n)PS(n)←C = [TA]C = D1,

and
P−1BP = PC←S(n) [TB ]S(n)PS(n)←C = [TB ]C = D2,

with both D1,D2 diagonal.

g) The above theory tells us that in order to determine a simultaneous eigenbasis for A and B we must
proceed as follows: each eigenspace EA

λ of A is B-invariant so that B defines an endomorphism of
EA
λ (by c) above). We then have that this endomorphism is diagonalisable (this is d) above) so

we need can find an eigenbasis for this endomorphism of EA
λ . Then, we can use these eigenbases

for each eigenspace of A to determine a simultaneous eigenbasis for both A and B.

We have that
χA(λ) = (2− λ)(1− λ),

so that λ1 = 1,λ2 = 2 are the eigenvalues of A. Then, it is easy to see that

Eλ1 = spanC

{[
1
−1

]}
, Eλ2 =

{[
1
0

]}
.

Thus, since each eigenspace of A has dimension 1 and is B-invariant, we must have that

B

[
1
−1

]
∈ Eλ1 , B

[
1
0

]
∈ Eλ2 .

This is also easy to verify directly. Hence, a simultaneous eigenbasis of A and B is([
1
−1

]
,

[
1
0

])
,

so that if we take

P =

[
1 1
−1 0

]
,

then we have

P−1AP =

[
1 0
0 2

]
, P−1BP =

[
3 0
0 −1

]
.
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