Math 110, Summer 2012 Long Homework 3

Due Tuesday 7/10, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. In this problem you will prove that commuting diagonalisable matrices can be simultaneously diagonalised. ${ }^{1}$

Let $f, g \in \operatorname{End}_{\mathbb{C}}(V)$, where V is a finite dimensional \mathbb{C}-vector space.
a) Suppose that U is a g-invariant subspace of V. Let $E_{\mu_{i}}^{g}$ be the μ_{i}-eigenspace of g (so that μ_{i} is an eigenvalue of g). Show that

$$
\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U=\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

as follows:
i) Show that

$$
E_{\mu_{1}}^{g} \cap U+\ldots+E_{\mu_{k}}^{g} \cap U \subset\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U
$$

ii) If $W_{i}=E_{\mu_{i}}^{g} \cap U$ show that

$$
W_{i} \cap\left(\sum_{j \neq i} W_{j}\right)=\left\{0_{v}\right\}, \quad \text { for each } i
$$

Hence, we have

$$
E_{\mu_{1}}^{g} \cap U+\ldots+E_{\mu_{k}}^{g} \cap U=\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

Suppose that $u \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U$. Then, $u \in U$ and

$$
u=e_{1}+\ldots+e_{k}
$$

with $e_{i} \in E_{\mu_{i}}^{g}$. You are now going to show that $e_{i} \in U$, for each i, thereby showing that

$$
u \in\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

Let

$$
\Gamma_{1}=\left\{i \in\{1, \ldots, k\} \mid e_{i} \in U\right\}, \Gamma_{2}=\left\{i \in\{1, \ldots, k\} \mid e_{i} \notin U\right\}
$$

so that $\Gamma_{1} \cup \Gamma_{2}=\{1, \ldots, k\}$.
iii) Show that if $\Gamma_{2}=\varnothing$ then $u \in\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)$.
iv) Show that if $\Gamma_{2} \neq \varnothing$ then

$$
u-\sum_{j \in \Gamma_{1}} e_{j} \in U
$$

Deduce that if $\Gamma_{2} \neq \varnothing$ then there is some nonzero $w \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U$, such that

$$
w=e_{i_{1}}+\ldots+e_{i_{s}}, \quad \text { with } e_{i_{j}} \in E_{\mu_{i_{j}}}^{g} \text { and } e_{i_{j}} \notin U
$$

[^0]with D_{i} diagonal, for every i.
v) Suppose $\Gamma_{2} \neq \varnothing$ and let
$$
\mathcal{L}=\left\{w \in\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U \mid w=e_{i_{1}}+\ldots+e_{i_{s}}, \quad \text { with } e_{i_{j}} \in E_{\mu_{i_{j}}}^{g} \text { and } e_{i_{j}} \notin U\right\}
$$

By iv) we know that $\mathcal{L} \neq \varnothing$. Let $w \in \mathcal{L}$ with

$$
w=e_{i_{1}}+\ldots+e_{i_{s}} .
$$

Show that it is not possible for $s=1$. Deduce that we must have $s \geq 2$.
vi) Let $w \in \mathcal{L}$ with

$$
w=e_{i_{1}}+\ldots+e_{i_{s}},
$$

and such that s is minimal. Using v) deduce that there is some $j \in\{1, \ldots, s\}$ such that $e_{i_{j}}$ is an eigenvector associated to a nonzero eigenvalue $\mu_{i_{j}}$ and show that

$$
g(w)-\mu_{i_{j}} w \in \mathcal{L}
$$

Explain why we have contradicted the minimality condition for w.
vii) Explain why $\Gamma_{2}=\varnothing$ and deduce that

$$
\left(E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}\right) \cap U \subset\left(E_{\mu_{1}}^{g} \cap U\right) \oplus \cdots \oplus\left(E_{\mu_{k}}^{g} \cap U\right)
$$

b) Deduce that if g admits a basis of eigenvectors then there is a basis of U (we are still assuming that U is g-invariant) consisting of eigenvectors of g. (Hint: Use that $E_{\mu_{1}}^{g} \oplus \cdots \oplus E_{\mu_{k}}^{g}=V$ and a).)
c) Suppose that $f \circ g=g \circ f$ (we say that f and g commute). Let E_{λ}^{f} be the λ-eigenspace of f. Prove that E_{λ}^{f} is g-invariant. (Hint: You must show that if $v \in E_{\lambda}^{f}$ then $g(v) \in E_{\lambda}^{f}$.)
d) Deduce that if f and g commute and there exists a basis of V consisting of eigenvectors of g then there exists a basis of $E_{\lambda_{i}}^{f}$ consisting of eigenvectors of g, for every eigenvalue λ_{i} of f. (Hint: Use b) and c).)
e) Prove: if f and g commute and there exists two bases of V, one consisting of eigenvectors of f and the other consisting of eigenvectors of g, then there is a single basis of V consisting of eigenvectors of both f and g.
f) Prove: Let $A, B \in \operatorname{Mat}_{n}(\mathbb{C})$ such that $A B=B A$. Suppose that A and B are both diagonalisable. Then, there is an invertible matrix P such that

$$
P^{-1} A P=D_{1}, \quad P^{-1} B P=D_{2}
$$

with D_{i} a diagonal matrix. (Hint: This follows from e).)
g) Find an invertible matrix P such that

$$
P^{-1} A P=D_{1}, \quad P^{-1} B P=D_{2}
$$

with D_{i} diagonal, and where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{cc}
-1 & -4 \\
0 & 3
\end{array}\right]
$$

(You do not need to show that $A B=B A$ or that A and B are diagonalisable - although you should be able to see that they are diagonalisable by looking at them.)

[^0]: ${ }^{1}$ In fact, if we have a family $\left(A_{i}\right)$ of diagonalisable matrices, such that $A_{i} A_{j}=A_{j} A_{i}$, for every i, j, then there is a common eigenbasis of all of the A_{i} : this means there is a single matrix P such that

 $$
 P^{-1} A_{i} P=D_{i}
 $$

