Math 110, Summer 2012 Long Homework 2 (SOME) SOLUTIONS

Due Tuesday 7/3, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. Let V be a \mathbb{K}-vector space. Consider the following minimal spanning property of a spanning set $E \subset V$ (so that $\operatorname{span}_{\mathbb{K}} E=V$):

* if $E^{\prime} \subset E$ and $\operatorname{span}_{\mathbb{K}} E=V$ then $E^{\prime}=E$.

Prove that a subset $E \subset V$ that spans V, so that $\operatorname{span}_{\mathbb{K}} E=V$, and which satisfies the minimal spanning property $*$ is a basis of V.
(This is Proposition 1.5.9 on p. 32 of the notes. To show that E is a basis of V it suffices to show that E is linearly independent. Look at the proof of Proposition 1.5 .5 to help you show how you can use the minimal spanning property of E to obtain linear independence of E.)
Solution: We are going to show that a spanning set E that satisfies $*$ is linearly independent: suppose that E were linearly dependent (ie, NOT linearly indepdendent). Then, by the Elimination Lemma there exists some $v \in E$ such that

$$
\operatorname{span}_{\mathbb{K}} E \backslash\{v\}=\operatorname{span}_{\mathbb{K}} E=V
$$

Therefore, if $E^{\prime}=E \backslash\{v\}$ then we have $E^{\prime} \subset E$ and

$$
\operatorname{span}_{\mathbb{K}} E^{\prime}=V
$$

Hence, by the minimal spanning property $*$, we must have that $E^{\prime}=E$, which is clearly absurd since $v \in E$ while $v \notin E^{\prime}$. Therefore, our initial assumption that E is not linearly dependent cannot be true so that E must be linearly independent. Hence, E is a spanning linearly independent subset of V so must be a basis.
2. In this problem we are going to try and determine properties of a matrix $A \in M a t_{n}(\mathbb{K})$ by studying endomorphisms of $\operatorname{Mat}_{n}(\mathbb{K})$.
Let $A \in \operatorname{Mat}_{n}(\mathbb{K})$. Define the linear morphisms (you DO NOT have to show this)

$$
L_{A}: \operatorname{Mat}_{n}(\mathbb{K}) \rightarrow \operatorname{Mat}_{n}(\mathbb{K}) ; B \mapsto A B, \quad R_{A}: \operatorname{Mat}_{n}(\mathbb{K}) \rightarrow \operatorname{Mat}_{n}(\mathbb{K}) ; B \mapsto B A
$$

a) Prove that L_{A} is injective if and only if A is invertible.
b) Prove that R_{A} is injective if and only if A is invertible.
c) Deduce that L_{A} is injective if and only if R_{A} is injective.
(Theorem 1.7.4 might be useful for parts a), b).)
Now, consider

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{Q})
$$

and let $\mathcal{B}=\left(e_{11}, e_{12}, e_{21}, e_{22}\right)$ denote the standard ordered basis of $\operatorname{Mat}_{2}(\mathbb{Q})\left(=\mathbb{K}^{[2] \times[2]}\right)$.
We know, using determinants for example, that A is invertible. However, we are going to obtain this fact using the results you have just proved above.
d) Determine the matrix of L_{A} relative to $\mathcal{B},\left[L_{A}\right]_{\mathcal{B}} \in \operatorname{Mat} t_{4}(\mathbb{Q})$.
e) Show that L_{A} is injective. (Use Theorem 1.7.4)
f) Deduce that A is invertible.
g) By solving the matrix equation

$$
\left[L_{A}\right]_{\mathcal{B}} \underline{X}=\left[I_{2}\right]_{\mathcal{B}}
$$

find the inverse of A.

Solution:

a) If L_{A} is injective then L_{A} is surjective, since L_{A} is a linear endomorphism of a finite dimensional vector space (Theorem 1.7.4). In particular, there exists $B \in \operatorname{Mat}_{n}(\mathbb{K})$ such that

$$
L_{A}(B)=I_{n} \Longrightarrow A B=I_{n}
$$

so that A is invertible (you should already know that a left inverse of A is also a right inverse of A. This was also proved last Thursday in class). Conversely, suppose that A^{-1} exists. Then, if

$$
A B=0_{n} \Longrightarrow A^{-1}(A B)=A^{-1} 0_{n}=0_{n} \Longrightarrow B=0_{n}
$$

Hence, if $B \in \operatorname{ker} L_{A}$ then $B=0_{n}$ so that L_{A} is injective.
b) This is the same as a).
c) Combine a) and b) to get the result.
d) We have

$$
\left[L_{A}\right]_{\mathcal{B}}=\left[\left[L_{A}\left(e_{11}\right)\right]_{\mathcal{B}}\left[L_{A}\left(e_{12}\right)\right]_{\mathcal{B}}\left[L_{A}\left(e_{21}\right)\right]_{\mathcal{B}}\left[L_{A}\left(e_{22}\right)\right]_{\mathcal{B}}\right]=\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

e) Since there is a pivot in every column we see that L_{A} is injective, by Theorem 1.7.4.
f) By a) we know that A is invertible since L_{A} is injective.
g) We consider the augmented matrix

$$
\left[\left[L_{A}\right]_{\mathcal{B}}\left[I_{2}\right]_{\mathcal{B}}\right]=\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & \mid 1 \\
0 & 1 & 0 & -1 & \mid 0 \\
0 & 0 & 1 & 0 & \mid 0 \\
0 & 0 & 0 & 1 & \mid 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \mid 1 \\
0 & 1 & 0 & 0 & \mid 1 \\
0 & 0 & 1 & 0 & \mid 0 \\
0 & 0 & 0 & 1 & \mid 1
\end{array}\right]
$$

so that the solution is

$$
\underline{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

This is the \mathcal{B}-coordinate vector of the inverse of A : hence, we have

$$
A^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

