Math 110, Summer 2012 Long Homework 2

Due Tuesday 7/3, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. Let V be a \mathbb{K}-vector space. Consider the following minimal spanning property of a spanning set $E \subset V$ (so that $\operatorname{span}_{\mathbb{K}} E=V$):

* if $E^{\prime} \subset E$ and $\operatorname{span}_{\mathbb{K}} E=V$ then $E^{\prime}=E$.

Prove that a subset $E \subset V$ that spans V, so that $\operatorname{span}_{\mathbb{K}} E=V$, and which satisfies the minimal spanning property $*$ is a basis of V.
(This is Proposition 1.5.9 on p. 32 of the notes. To show that E is a basis of V it suffices to show that E is linearly independent. Look at the proof of Proposition 1.5 .5 to help you show how you can use the minimal spanning property of E to obtain linear independence of E.)
2. In this problem we are going to try and determine properties of a matrix $A \in \operatorname{Mat}_{n}(\mathbb{K})$ by studying endomorphisms of $\operatorname{Mat}_{n}(\mathbb{K})$.
Let $A \in \operatorname{Mat}_{n}(\mathbb{K})$. Define the linear morphisms (you DO NOT have to show this)

$$
L_{A}: \operatorname{Mat}_{n}(\mathbb{K}) \rightarrow \operatorname{Mat}_{n}(\mathbb{K}) ; B \mapsto A B, \quad R_{A}: \operatorname{Mat}_{n}(\mathbb{K}) \rightarrow \operatorname{Mat}_{n}(\mathbb{K}) ; B \mapsto B A
$$

a) Prove that L_{A} is injective if and only if A is invertible.
b) Prove that R_{A} is injective if and only if A is invertible.
c) Deduce that L_{A} is injective if and only if R_{A} is injective.
(Theorem 1.7.4 might be useful for parts a), b).)

Now, consider

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{Q})
$$

and let $\mathcal{B}=\left(e_{11}, e_{12}, e_{21}, e_{22}\right)$ denote the standard ordered basis of $\operatorname{Mat}_{2}(\mathbb{Q})\left(=\mathbb{K}^{[2] \times[2]}\right)$.
We know, using determinants for example, that A is invertible. However, we are going to obtain this fact using the results you have just proved above.
d) Determine the matrix of L_{A} relative to $\mathcal{B},\left[L_{A}\right]_{\mathcal{B}} \in \operatorname{Mat}_{4}(\mathbb{Q})$.
e) Show that L_{A} is injective. (Use Theorem 1.7.4)
f) Deduce that A is invertible.
g) By solving the matrix equation

$$
\left[L_{A}\right]_{\mathcal{B}} \underline{X}=\left[I_{2}\right]_{\mathcal{B}},
$$

find the inverse of A.

