Math 110, Summer 2012 Long Homework 1, SOLUTIONS

Due Tuesday 6/26, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. Let V be a \mathbb{K}-vector space, $E \subset V$ a nonempty finite subset. In this question we will characterise properties of E using linear morphisms.
a) Prove: E is linearly independent if and only if the linear morphism

$$
h: \mathbb{K}^{E} \rightarrow V ; f \mapsto \sum_{e \in E} f(e) \cdot e
$$

is injective.
b) Prove: E is a spanning set of V if and only if the linear morphism

$$
h: \mathbb{K}^{E} \rightarrow V ; f \mapsto \sum_{e \in E} f(e) \cdot e
$$

is surjective.
Solution: a) (\Rightarrow) Suppose that E is linearly independent. Denote $E=\left\{e_{1}, \ldots, e_{n}\right\}$, where $n=|E|$. Then, we want to show that the linear morphism h is injective. Using a result from the notes, we know that h is injective if and only if $\operatorname{ker} h=\left\{0_{\mathbb{K}^{E}}\right\}$. Let $f \in \operatorname{ker} h$: we will show that $f=0_{\mathbb{K}^{E}}$. As $h(f)=0_{V}$, we have

$$
0_{V}=h(f)=\sum_{e \in E} f(e) e=f\left(e_{1}\right) e_{1}+\ldots+f\left(e_{n}\right) e_{n}, \quad f\left(e_{1}\right), \ldots, f\left(e_{n}\right) \in \mathbb{K}
$$

This is a linear relation among the vectors in E so that it must be the trivial linear relation, since E is linearly independent. Hence, $f\left(e_{1}\right)=\cdots=f\left(e_{n}\right)=0 \in \mathbb{K}$. This means that f is the zero function, ie, $f=0_{\mathbb{K} E}$.
(\Leftarrow) Suppose that h is injective. Then, ker $h=\left\{0_{\mathbb{K}^{E}}\right\}$. Let

$$
\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}=0 v
$$

be a linear relation among the vectors in E. Then, defined the function $f \in \mathbb{K}^{E}$ as follows

$$
f: E \rightarrow \mathbb{K} ; e_{i} \mapsto \lambda_{i}
$$

Then, the linear relation above can be translated as saying that $h(f)=0 v$. Hence, $f=0_{\mathbb{K}^{E}}$, so that $\lambda_{i}=f\left(e_{i}\right)=0$, for every i. Therefore, E is linearly independent.
b) (\Rightarrow) Suppose that $\operatorname{span}_{\mathbb{K}} E=V$. Thus, for every $v \in V$, there are scalars $c_{1}, \ldots, c_{n} \in \mathbb{K}$ such that

$$
v=c_{1} e_{1}+\ldots+c_{n} e_{n}
$$

We want to show that h is surjective: therefore, for any $v \in V$ we must find a function $f \in \mathbb{K}^{E}$ such that

$$
h(f)=f\left(e_{1}\right) e_{1}+\ldots+f\left(e_{n}\right) e_{n}=v
$$

So, let $v \in V$ and c_{1}, \ldots, c_{n} be scalars as above. Define $f \in \mathbb{K}^{E}$ to be the function such that $f\left(e_{i}\right)=c_{i}$, for any i. Then, we have $h(f)=v$. Hence, h is surjective.
(\Leftarrow) Conversely, suppose that h is surjective. Hence, for any $v \in V$ there is some function $f \in \mathbb{K}^{E}$ such that $h(f)=v$. In order to show that $\operatorname{span}_{\mathbb{K}} E=V$ we must show that every $v \in V$ can be written as a linear combination of elements in E. So, let $v \in V$. Then, since h is surjective, we can find $f \in \mathbb{K}^{E}$ such that

$$
v=h(f)=f\left(e_{1}\right) e_{1}+\ldots+f\left(e_{n}\right) e_{n}
$$

with $f\left(e_{i}\right) \in \mathbb{K}$. Hence, we have written v as a linear combination of vectors in E. Since v was arbitrary this shows that $\operatorname{span}_{\mathbb{K}} E=V$.
2. Consider the subspace

$$
s l_{2}(\mathbb{C})=\left\{\left.A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{C}) \right\rvert\, a_{11}+a_{22}=0\right\} \subset \operatorname{Mat}_{2}(\mathbb{C})
$$

So, $s l_{2}(\mathbb{C})=$ kertr, where $t r$ is the linear morphism (you DO NOT have to show this)

$$
\operatorname{tr}: M a t_{2}(\mathbb{C}) \rightarrow \mathbb{C} ; A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \mapsto a_{11}+a_{22}
$$

This is the special linear Lie (pronounced 'lee') algebra of 2×2 complex matrices. It is of fundamental importance and arises in many areas of mathematics. We denote

$$
e=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], h=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], f=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \in s l_{2}(\mathbb{C}) .
$$

a) Using the Rank Theorem, show that $\operatorname{dim} s l_{2}(\mathbb{C})=3$.
b) Show that $\mathcal{B}=(e, h, f)$ is an ordered basis of $s l_{2}(\mathbb{C})$.

For every $A \in M_{2}(\mathbb{C})$ we have a function

$$
\operatorname{ad}_{A}: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C}) ; B \mapsto A B-B A .
$$

c) Show that ad_{A} is a linear morphism, for every $A \in M_{2}(\mathbb{C})$.
d) Let $A, B \in s l_{2}(\mathbb{C})$. Show that $\operatorname{ad}_{A}(B) \in s l_{2}(\mathbb{C})$.

Hence, for $A \in s l_{2}(\mathbb{C})$ we see that $\operatorname{ad}_{A} \in \operatorname{End}_{\mathbb{C}}\left(s l_{2}(\mathbb{C})\right)$ so that there exists a function

$$
\operatorname{ad}: s l_{2}(\mathbb{C}) \rightarrow \operatorname{End}_{\mathbb{C}}\left(s l_{2}(\mathbb{C})\right) ; A \mapsto \operatorname{ad}_{A}
$$

e) Determine $\left[\operatorname{ad}_{e}\right]_{\mathcal{B}},\left[\operatorname{ad}_{h}\right]_{\mathcal{B}},\left[\operatorname{ad}_{f}\right]_{\mathcal{B}}$, the matrices of $\operatorname{ad}_{e}, \operatorname{ad}_{h}, \operatorname{ad}_{f}$ with respect to the ordered basis \mathcal{B}.
f) The function ad is linear (you DO NOT have to show this): hence, if $A=\lambda e+\mu h+\tau f \in$ $s l_{2}(\mathbb{C}), \lambda, \mu, \tau \in \mathbb{C}$, then $\operatorname{ad}_{A}=\lambda \operatorname{ad}_{e}+\mu \operatorname{ad}_{h}+\tau \operatorname{ad}_{f}$. Show that ad is injective.

Solution: a) The Rank Theorem states that, if $f \in \operatorname{Hom}_{\mathbb{K}}(V, W)$ then

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{ker} f+\operatorname{dimim} f
$$

So, since $s l_{2}(\mathbb{C})=$ kertr, where $\operatorname{tr}: \operatorname{Mat}_{2}(\mathbb{C}) \rightarrow \mathbb{C}$, if we can show that dimimtr $=1$ then we are done. As imtr $\subset \mathbb{C}$ is a subspace, we must have that its dimension is either 0 or 1 . If dimimtr $=0$ then $\operatorname{imtr}=\{0\}$ so that tr is the zero morphism. However, we have

$$
\operatorname{tr}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=1,
$$

so that tr is not the zero morphism. Hence, we must have that imtr $=\mathbb{C}$ and $\operatorname{dim} \operatorname{imtr}=1$. Hence, by the Rank Theorem we have

$$
4=1+\operatorname{dim} s_{2}(\mathbb{C})
$$

and the claim follows.
b) Since $\operatorname{dim} s l_{2}(\mathbb{C})=3$ it suffices to show that \mathcal{B} is linearly independent (because $|\mathcal{B}|=3$) in order to show that it is a basis. So, suppose we have a linear relation

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=c_{1}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+c_{3}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
c_{2} & c_{1} \\
c_{3} & -c_{2}
\end{array}\right] .
$$

Then, we must have $c_{1}=c_{2}=c_{3}=0$ so that \mathcal{B} is linearly independent.
c) Fix $A \in \operatorname{Mat}_{2}(\mathbb{C})$. We show that ad_{A} satisfies LIN : let $B, C \in \operatorname{Mat}_{2}(\mathbb{C}), \lambda \in \mathbb{C}$. Then,

$$
\operatorname{ad}_{A}(B+\lambda C)=A(B+\lambda C)-(B+\lambda C) A=A B-B A+A \lambda C-\lambda C A=\operatorname{ad}_{A}(B)+\lambda \operatorname{ad}_{A}(C) .
$$

Hence, ad_{A} is linear.
d) Let

$$
A=\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right], B=\left[\begin{array}{cc}
x & y \\
z & -x
\end{array}\right] \in \operatorname{sl}_{2}(\mathbb{C})
$$

Then,

$$
A B-B A=\left[\begin{array}{ll}
x a+z b & y a-x b \\
x c-z a & y c+x a
\end{array}\right]-\left[\begin{array}{ll}
a x+c y & b x-a y \\
a z-c x & b z+a x
\end{array}\right]
$$

and it is easy to see that this matrix has zero trace.
e) We have

$$
\left[\operatorname{ad}_{e}\right]_{\mathcal{B}}=\left[\left[\operatorname{ad}_{e}(e)\right]_{\mathcal{B}}\left[\operatorname{ad}_{e}(h)\right]_{\mathcal{B}}\left[\operatorname{ad}_{e}(f)\right]_{\mathcal{B}}\right]
$$

and

$$
\operatorname{ad}_{e}(e)=e . e-e . e=0, \operatorname{ad}_{e}(h)=e h-h e=-2 e, \operatorname{ad}_{e}(f)=e f-f e=h
$$

so that

$$
\left[\operatorname{ad}_{e}\right]_{\mathcal{B}}=\left[\begin{array}{ccc}
0 & -2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Similarly,

$$
\begin{aligned}
& {\left[\operatorname{ad}_{h}\right]_{\mathcal{B}}=\left[\left[\operatorname{ad}_{h}(e)\right]_{\mathcal{B}}\left[\operatorname{ad}_{h}(h)\right]_{\mathcal{B}}\left[\operatorname{ad}_{h}(f)\right]_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right],} \\
& {\left[\operatorname{ad}_{f}\right]_{\mathcal{B}}=\left[\left[\operatorname{ad}_{f}(e)\right]_{\mathcal{B}}\left[\operatorname{ad}_{f}(h)\right]_{\mathcal{B}}\left[\operatorname{ad}_{f}(f)\right]_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]}
\end{aligned}
$$

f) We are going to show that ker $a d=\{0\}$. Suppose that $\operatorname{ad}_{A}=0$. Then, since \mathcal{B} is a basis we can write

$$
A=c_{e} e+c_{h} h+c_{f} f
$$

for some unique scalars $c_{e}, c_{h}, c_{f} \in \mathbb{C}$. Hence, using the linearity of ad, we have

$$
0=\operatorname{ad}_{A}=c_{e} \operatorname{ad}_{e}+c_{h} \operatorname{ad}_{h}+c_{f} \operatorname{ad}_{f}
$$

so that if we can show that $E=\left\{\operatorname{ad}_{e}, \operatorname{ad}_{h}, \operatorname{ad}_{f}\right\}$ are linearly independent then we obtain $c_{e}=c_{h}=$ $c_{f}=0 \in \mathbb{C}$ so that $A=0$. But linear independence of E is the same as showing that the matrices $\left[\operatorname{ad}_{e}\right]_{\mathcal{B}},\left[\mathrm{ad}_{h}\right]_{\mathcal{B}},\left[\mathrm{ad}_{f}\right]_{\mathcal{B}}$ are linearly independent, which is easy to verify by looking at them. Hence, we have that E is linearly independent so that $A=0$ and ad is injective.

