Math 110, Summer 2012 Long Homework 1

Due Tuesday 6/26, 10.10am, in Etcheverry 3109. Late homework will not be accepted.
Please write your answers in complete English sentences (where applicable). Make your arguments rigorous - if something is 'obvious', state why this is the case. Full credit will be awarded to those solutions that are complete and answer the question posed in a coherent manner.

1. Let V be a \mathbb{K}-vector space, $E \subset V$ a nonempty finite subset. In this question we will characterise properties of E using linear morphisms.
a) Prove: E is linearly independent if and only if the linear morphism

$$
h: \mathbb{K}^{E} \rightarrow V ; f \mapsto \sum_{e \in E} f(e) \cdot e
$$

is injective.
b) Prove: E is a spanning set of V if and only if the linear morphism

$$
h: \mathbb{K}^{E} \rightarrow V ; f \mapsto \sum_{e \in E} f(e) \cdot e
$$

is surjective.
2. Consider the subspace

$$
s l_{2}(\mathbb{C})=\left\{\left.A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{C}) \right\rvert\, a_{11}+a_{22}=0\right\} \subset \operatorname{Mat}_{2}(\mathbb{C})
$$

So, $s l_{2}(\mathbb{C})=$ kertr, where $t r$ is the linear morphism (you DO NOT have to show this)

$$
\operatorname{tr}: \operatorname{Mat}_{2}(\mathbb{C}) \rightarrow \mathbb{C} ; A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \mapsto a_{11}+a_{22}
$$

This is the special linear Lie (pronounced 'lee') algebra of 2×2 complex matrices. It is of fundamental importance and arises in many areas of mathematics. We denote

$$
e=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], h=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], f=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \in s l_{2}(\mathbb{C}) .
$$

a) Using the Rank Theorem, show that $\operatorname{dim} s l_{2}(\mathbb{C})=3$.
b) Show that $\mathcal{B}=(e, h, f)$ is an ordered basis of $s l_{2}(\mathbb{C})$.

For every $A \in M_{2}(\mathbb{C})$ we have a function

$$
\operatorname{ad}_{A}: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C}) ; B \mapsto A B-B A .
$$

c) Show that ad_{A} is a linear morphism, for every $A \in M_{2}(\mathbb{C})$.
d) Let $A, B \in s l_{2}(\mathbb{C})$. Show that $\operatorname{ad}_{A}(B) \in s l_{2}(\mathbb{C})$.

Hence, for $A \in s l_{2}(\mathbb{C})$ we see that $\operatorname{ad}_{A} \in \operatorname{End}_{\mathbb{C}}\left(s l_{2}(\mathbb{C})\right)$ so that there exists a function

$$
\operatorname{ad}: s l_{2}(\mathbb{C}) \rightarrow \operatorname{End}_{\mathbb{C}}\left(s l_{2}(\mathbb{C})\right) ; A \mapsto \operatorname{ad}_{A}
$$

e) Determine $\left[\operatorname{ad}_{e}\right]_{\mathcal{B}},\left[\operatorname{ad}_{h}\right]_{\mathcal{B}},\left[\operatorname{ad}_{f}\right]_{\mathcal{B}}$, the matrices of $\operatorname{ad}_{e}, \operatorname{ad}_{h}, \operatorname{ad}_{f}$ with respect to the ordered basis \mathcal{B}.
f) The function ad is linear (you DO NOT have to show this): hence, if $A=\lambda e+\mu h+\tau f \in$ $s l_{2}(\mathbb{C}), \lambda, \mu, \tau \in \mathbb{C}$, then $\operatorname{ad}_{A}=\lambda \operatorname{ad}_{e}+\mu \operatorname{ad}_{h}+\tau \operatorname{ad}_{f}$. Show that ad is injective.

