
Math 110, Spring 2014. Quotient Spaces Review

Let V be a vector space over F (recall that we always assume that F ∈ {R,C}) and U ⊂ V
be a subspace.

We define an affine subset of V parallel to U to be a subset of the form

v + U
def
= {v + u | u ∈ U}

for some v ∈ V . We could also say that the above subset is an affine subset of V parallel
to U through v .

It is important to note that an affine subset parallel to U is not a subspace of U in general,
but only a subset (ie, it doesn’t necessarily satisfy the axioms defining a subspace). The only
affine subset parallel to U that is a subspace is the subset 0V + U = U.

Important Remark: when we consider an affine subset parallel to U as above we have defined
it with respect to some v ∈ V , ie, we have implicitly referred to some v ∈ V . However, this v
is not unique! In fact, infinitely many different v ’s will define the same affine subset parallel
to U: for any w ∈ U we have that

v + U = (v + w) + U.

Indeed, we need only show that the two subsets above are equal: let v + u ∈ v + U (recall the
definition of the set v + U). Then,

v + u = (v + w) + (u − w) ∈ (v + w) + U,

since u − w ∈ U. Hence, v + U ⊂ (v + w) + U.

The other containment is similar. We will call such a v defining an affine subset parallel to U
a representative of the affine subset.

Hence, there is a certain ambiguity inherent in our definition of an affine subset parallel to U
- when writing down such a subset we make reference to some v ∈ V , but there is no natural
choice of v to take. However, this is not such a problem: let’s say that I have an affine subset
parallel to U in my pocket, let’s denote it v + U, and let’s say that you have an affine subset
paralle to U in your pocket, denoted v ′ + U. How can we tell when they are the same affine
subset? We have the following nice

FACT 1:
v + U = v ′ + U ⇔ v − v ′ ∈ U ⇔ v ′ − v ∈ U.

Let’s look at some (geometric) examples:

i) let V = R2, and U ⊂ R2 be some line (ie dim U = 1). Then, an affine subset parallel to U is
a line parallel to U in the usual sense; ie, it’s a line through some point in R2 in the direction
of U.

ii) let V = R3 and U be a line (so that dim U = 1). Then, an affine subset parallel to U is a
line in R3 parallel to U in the usual sense; ie, it’s a line through some point in R3 in the same
direction as U.

If dim U = 2 (so that U is a plane in R3) then an affine subset parallel to U is a plane in R3

that is parallel to U in the usual sense.

Basically, when I think of an affine subset parallel to some subspace U in an arbitrary V I have
the above two examples in my head.
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Now, let’s make things a bit more interesting: denote the set of all affine subsets parallel
to U by V /U so that

V /U
def
= {S ⊂ V | S = v + U, for some v ∈ V }.

We can define the structure of a vector space (over F ) on V /U:

- we have 0V /U = 0V + U ∈ V /U,

- for v + U, w + U ∈ V /U we define

(v + U) + (w + U)
def
= (v + w) + U.

- for v + U ∈ V /U, c ∈ F we define

c(v + U)
def
= (cv) + U.

FACT 2: with the above definitions V /U is a vector space over F .

So, now we can ask questions about linear independence, span, bases, whatever, in V /U.

Example: Let U = {x ∈ R3 | x1 + x2 + x3 = 0} ⊂ R3(= V ). Prove that the list1
1
1

 + U,

 1
−1
1

 + U

 is linearly dependent in V /U.

We need to find c1, c2 ∈ F , with at least one being nonzero, such that

c1

1
1
1

 + U

 + c2

 1
−1
1

 + U

 = 0V /U .

Using the definitions of ‘sum’, ‘scalar multiplication’ and ‘zero vector’ given above, the above
equation is the same as c1

1
1
1

 + c2

 1
−1
1

 + U = 0V + U.

Hence, we are saying the the affine subset on the LHS is equal to the affine subset on the RHS
- using FACT 1 we must have

c1

1
1
1

 + c2

 1
−1
1

 =

c1 + c2
c1 − c2
c1 + c2

 ∈ U.

Thus, we necessarily must have that (by definition of U)

0 = (c1 + c2) + (c1 − c2) + (c1 + c2) = 3c1 + c2.

Taking c1 = 1, c2 = −3 the above equation is satisfied so that we have found a nontrivial linear

relation among

1
1
1

 + U,

 1
−1
1

 + U

. Hence, this list is linearly dependent.
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We could have proved the above statement quite easily using the

FACT 3: let V be finite dimensional, U ⊂ V a subspace. Then,

dim V = dim U + dim V /U.

Example: (This is half of the proof of FACT 3) Let V be finite dimensional, U ⊂ V a subspace.
We know that we can find a subspace W ⊂ V such that V = U ⊕W . Let (w1, ... , wk) ⊂ W
be a basis of W . Prove that

(w1 + U, ... , wk + U)

is linearly independent in V /U.

This is a linear independence statement: suppose that c1, ... , ck ∈ F such that

c1(w1 + U) + ... + ck(wk + U) = 0V /U .

Thus, we must have
(c1w1 + ... + ckwk) + U = 0V + U,

so that
c1w1 + ... + ckwk ∈ U.

Notice that the LHS is a vector in W , so we have shown that

c1w1 + ... + ckwk ∈ U ∩W = {0V },

since V = U ⊕W . Thus, we have

c1w1 + ... + ckwk = 0V ,

so that c1 = · · · = ck = 0, since the w ’s are linearly independent.

In fact, the above example gives us a way to try and find a basis of V /U (at least for V finite
dimensional): take U, find a subspace W such that V = U ⊕W . Let (w1, ... , wk) be a basis
of W . Then, the list (w1 + U, ... , wk + U) is a basis of V /U.

Note: it is not enough to merely take linearly independent (w1, ... , wk) ⊂ V with w1, ... , wk /∈
U - for example, if V = R3 and U = span(e1), then w1 = e2, w2 = e1 + e2 are vectors not in
U and are linearly independent. However, since

w2 − w1 = e1 ∈ U,

we see that w1 + U = w2 + U so that the list (w1 + U, w2 + U) is linearly dependent!

Example: Let V be finite dimensional, U ⊂ V a subspace. Suppose that W ⊂ V is a subspace
such that v = U ⊕W . Construct an explicit isomorphism

T : V /U →W .

This problem is asking that we construct a linear map

T : V /U →W ,

that is bijective. However, since dim V /U = dim V − dim U = dim W , and both these vector
spaces are finite dimensional, we need only show that T is injective or surjective (why?). How
do we construct linear maps? We need only define it on a basis of V /U - so, choose a basis
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(w1, ... , wk) of W , so that (by the above Example) (w1 + U, ... , wk + U) is a basis of V /U.
What do we think the outputs of these basis vectors should be? An obvious choice would be

T (wi + U) = wi , i = 1, ... , k .

Let’s show that T with this definition is injective: suppose that v + U ∈ null(T ). Thus, we
have

v + U =
k∑

i=1

ci (wi + U) = (
k∑

i=1

ciwi ) + U,

so that (recalling the definition of a linear map defined by specifying the outputs of a basis -
Theorem 3.5)

0 = T (v + U) =
k∑

i=1

ciwi =⇒ c1 = · · · = ck = 0,

since the w ’s are linearly independent. Hence, v + U = 0V + U = 0V /U and null(T ) = {0} so
that T is injective.
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