Math 110, Spring 2014. Quotient Spaces Review

Let V be a vector space over F (recall that we always assume that $F \in\{\mathbb{R}, \mathbb{C}\}$) and $U \subset V$ be a subspace.

We define an affine subset of V parallel to U to be a subset of the form

$$
v+U \stackrel{\text { def }}{=}\{v+u \mid u \in U\}
$$

for some $v \in V$. We could also say that the above subset is an affine subset of V parallel to U through v.

It is important to note that an affine subset parallel to U is not a subspace of U in general, but only a subset (ie, it doesn't necessarily satisfy the axioms defining a subspace). The only affine subset parallel to U that is a subspace is the subset $0_{V}+U=U$.

Important Remark: when we consider an affine subset parallel to U as above we have defined it with respect to some $v \in V$, ie, we have implicitly referred to some $v \in V$. However, this v is not unique! In fact, infinitely many different v 's will define the same affine subset parallel to U : for any $w \in U$ we have that

$$
v+U=(v+w)+U
$$

Indeed, we need only show that the two subsets above are equal: let $v+u \in v+U$ (recall the definition of the set $v+U$). Then,

$$
v+u=(v+w)+(u-w) \in(v+w)+U,
$$

since $u-w \in U$. Hence, $v+U \subset(v+w)+U$.
The other containment is similar. We will call such a v defining an affine subset parallel to U a representative of the affine subset.

Hence, there is a certain ambiguity inherent in our definition of an affine subset parallel to U - when writing down such a subset we make reference to some $v \in V$, but there is no natural choice of v to take. However, this is not such a problem: let's say that I have an affine subset parallel to U in my pocket, let's denote it $v+U$, and let's say that you have an affine subset paralle to U in your pocket, denoted $v^{\prime}+U$. How can we tell when they are the same affine subset? We have the following nice
FACT 1:

$$
v+U=v^{\prime}+U \Leftrightarrow v-v^{\prime} \in U \Leftrightarrow v^{\prime}-v \in U .
$$

Let's look at some (geometric) examples:
i) let $V=\mathbb{R}^{2}$, and $U \subset \mathbb{R}^{2}$ be some line (ie $\operatorname{dim} U=1$). Then, an affine subset parallel to U is a line parallel to U in the usual sense; ie, it's a line through some point in \mathbb{R}^{2} in the direction of U.
ii) let $V=\mathbb{R}^{3}$ and U be a line (so that $\operatorname{dim} U=1$). Then, an affine subset parallel to U is a line in \mathbb{R}^{3} parallel to U in the usual sense; ie, it's a line through some point in \mathbb{R}^{3} in the same direction as U.
If $\operatorname{dim} U=2$ (so that U is a plane in \mathbb{R}^{3}) then an affine subset parallel to U is a plane in \mathbb{R}^{3} that is parallel to U in the usual sense.

Basically, when I think of an affine subset parallel to some subspace U in an arbitrary $V I$ have the above two examples in my head.

Now, let's make things a bit more interesting: denote the set of all affine subsets parallel to U by V / U so that

$$
V / U \stackrel{\text { def }}{=}\{S \subset V \mid S=v+U, \text { for some } v \in V\}
$$

We can define the structure of a vector space (over F) on V / U :

- we have $0_{V / U}=0_{V}+U \in V / U$,
- for $v+U, w+U \in V / U$ we define

$$
(v+U)+(w+U) \stackrel{\text { def }}{=}(v+w)+U .
$$

- for $v+U \in V / U, c \in F$ we define

$$
c(v+U) \stackrel{\text { def }}{=}(c v)+U .
$$

FACT 2: with the above definitions V / U is a vector space over F.
So, now we can ask questions about linear independence, span, bases, whatever, in V / U.
Example: Let $U=\left\{\underline{x} \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\} \subset \mathbb{R}^{3}(=V)$. Prove that the list $\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+U,\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]+U\right)$ is linearly dependent in V / U.
We need to find $c_{1}, c_{2} \in F$, with at least one being nonzero, such that

$$
c_{1}\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+U\right)+c_{2}\left(\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+U\right)=0_{V / U}
$$

Using the definitions of 'sum', 'scalar multiplication' and 'zero vector' given above, the above equation is the same as

$$
\left(c_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right)+U=0 v+U
$$

Hence, we are saying the the affine subset on the LHS is equal to the affine subset on the RHS - using FACT 1 we must have

$$
c_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
c_{1}+c_{2} \\
c_{1}-c_{2} \\
c_{1}+c_{2}
\end{array}\right] \in U
$$

Thus, we necessarily must have that (by definition of U)

$$
0=\left(c_{1}+c_{2}\right)+\left(c_{1}-c_{2}\right)+\left(c_{1}+c_{2}\right)=3 c_{1}+c_{2}
$$

Taking $c_{1}=1, c_{2}=-3$ the above equation is satisfied so that we have found a nontrivial linear relation among $\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+U,\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]+U\right)$. Hence, this list is linearly dependent.

We could have proved the above statement quite easily using the
FACT 3: let V be finite dimensional, $U \subset V$ a subspace. Then,

$$
\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} V / U .
$$

Example: (This is half of the proof of FACT 3) Let V be finite dimensional, $U \subset V$ a subspace. We know that we can find a subspace $W \subset V$ such that $V=U \oplus W$. Let $\left(w_{1}, \ldots, w_{k}\right) \subset W$ be a basis of W. Prove that

$$
\left(w_{1}+U, \ldots, w_{k}+U\right)
$$

is linearly independent in V / U.
This is a linear independence statement: suppose that $c_{1}, \ldots, c_{k} \in F$ such that

$$
c_{1}\left(w_{1}+U\right)+\ldots+c_{k}\left(w_{k}+U\right)=0_{V / U} .
$$

Thus, we must have

$$
\left(c_{1} w_{1}+\ldots+c_{k} w_{k}\right)+U=0_{v}+U
$$

so that

$$
c_{1} w_{1}+\ldots+c_{k} w_{k} \in U
$$

Notice that the LHS is a vector in W, so we have shown that

$$
c_{1} w_{1}+\ldots+c_{k} w_{k} \in U \cap W=\left\{0_{v}\right\}
$$

since $V=U \oplus W$. Thus, we have

$$
c_{1} w_{1}+\ldots+c_{k} w_{k}=0_{V}
$$

so that $c_{1}=\cdots=c_{k}=0$, since the w 's are linearly independent.
In fact, the above example gives us a way to try and find a basis of V / U (at least for V finite dimensional): take U, find a subspace W such that $V=U \oplus W$. Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of W. Then, the list $\left(w_{1}+U, \ldots, w_{k}+U\right)$ is a basis of V / U.
Note: it is not enough to merely take linearly independent $\left(w_{1}, \ldots, w_{k}\right) \subset V$ with $w_{1}, \ldots, w_{k} \notin$ U - for example, if $V=\mathbb{R}^{3}$ and $U=\operatorname{span}\left(e_{1}\right)$, then $w_{1}=e_{2}, w_{2}=e_{1}+e_{2}$ are vectors not in U and are linearly independent. However, since

$$
w_{2}-w_{1}=e_{1} \in U,
$$

we see that $w_{1}+U=w_{2}+U$ so that the list $\left(w_{1}+U, w_{2}+U\right)$ is linearly dependent!
Example: Let V be finite dimensional, $U \subset V$ a subspace. Suppose that $W \subset V$ is a subspace such that $v=U \oplus W$. Construct an explicit isomorphism

$$
T: V / U \rightarrow W .
$$

This problem is asking that we construct a linear map

$$
T: V / U \rightarrow W,
$$

that is bijective. However, since $\operatorname{dim} V / U=\operatorname{dim} V-\operatorname{dim} U=\operatorname{dim} W$, and both these vector spaces are finite dimensional, we need only show that T is injective or surjective (why?). How do we construct linear maps? We need only define it on a basis of V / U - so, choose a basis
$\left(w_{1}, \ldots, w_{k}\right)$ of W, so that (by the above Example) $\left(w_{1}+U, \ldots, w_{k}+U\right)$ is a basis of V / U. What do we think the outputs of these basis vectors should be? An obvious choice would be

$$
T\left(w_{i}+U\right)=w_{i}, i=1, \ldots, k .
$$

Let's show that T with this definition is injective: suppose that $v+U \in \operatorname{null}(T)$. Thus, we have

$$
v+U=\sum_{i=1}^{k} c_{i}\left(w_{i}+U\right)=\left(\sum_{i=1}^{k} c_{i} w_{i}\right)+U
$$

so that (recalling the definition of a linear map defined by specifying the outputs of a basis Theorem 3.5)

$$
0=T(v+U)=\sum_{i=1}^{k} c_{i} w_{i} \Longrightarrow c_{1}=\cdots=c_{k}=0
$$

since the w 's are linearly independent. Hence, $v+U=0_{V}+U=0_{V / U}$ and null $(T)=\{0\}$ so that T is injective.

