Math 110, Spring 2014. Midterm Review

Things You Must Know:

Definitions:

- Ch. 1 vector space over F, subspace, sums of subspaces, direct sums of subspace (in particular, they are special types of sums).
- Ch. 2 finite dimensional spaces, spanning lists, linearly (in)dependent lists, basis, dimension.
- Ch. 3 linear maps, null(T), range(T), L(V, W), L(V), operators, matrix of a linear map, injective, surjective, bijective, invertible linear map, isomorphic, dual space, dual basis.

Theorems:

- Ch. 1 $U \subset V$ is a subspace if and only if $\forall \lambda, \mu \in F$, $u, v \in U$ we have $\lambda u + \mu v \in U$.
 - for $U, W \subset V$ subspaces, U + W is a subspace.
 - $V = U \oplus W$ if and only if V = U + W and $U \cap W = \{0\}$.
- Ch. 2 - if V is f.d and (v_1, \ldots, v_m) is linearly dependent in V, and $v_1 \neq 0$ then there is $j \in \{2, \ldots, m\}$ such that (v_1, \ldots, v_i) is linearly independent, for $i = 1, \ldots, j-1$, and $v_j \in \operatorname{span}(v_1, \ldots, v_{j-1})$. Hence, $\operatorname{span}(v_1, \ldots, v_j) = \operatorname{span}(v_1, \ldots, v_{j-1})$.
 - if V is f.d. with $V = \operatorname{span}(v_1, \dots, v_m)$, and (v_1, \dots, v_k) is linearly independent, then $k \leq m$.
 - if dim V = n and $(v_1, ..., v_k)$ is linearly independent then $k \le n$. (linearly independent lists are 'small')
 - if dim V = n and $(v_1, ..., v_m)$ is a spanning list then $m \ge n$. (spanning lists are 'big')
 - bases exist!
 - every linearly independent list of length dim V is a basis.
 - every spanning list of length dim V is a basis.
 - every linearly independent list can be extended to a basis.
 - if $(v_1, ..., v_m)$ is a spanning list in V, dim V = n, then there are $i_1, ..., i_n \in \{1, ..., m\}$ distinct, such that $(v_{i_1}, ..., v_{i_n})$ is a basis.
 - if $U \subset V$ is a subspace then dim $U \leq \dim V$. In particular, any basis of U can be extended to a basis of V.
 - (**Dimension Formula**) if $U, W \subset V$ are subspaces, V f.d., then

$$\dim(U+W)=\dim U+\dim W-\dim U\cap W.$$

- -U+W is a direct sum if and only if $\dim(U+W)=\dim U+\dim W$.
- Ch. 3 - let $T \in L(V, W)$. Then, null $(T) \subset V$ is a subspace; range $(T) \subset W$ is a subspace.
 - $-T \in L(V, W)$ is injective if and only if $null(T) = \{0\}$.
 - $-T \in L(V, W)$ is surjective if and only if range(T) = W.
 - let V be f.d., $T \in L(V, W)$. Then, dim $V = \dim \text{null}(T) + \dim \text{range}(T)$.
 - if dim $V > \dim W$ then no linear map $T \in L(V, W)$ is injective.

- if dim $V < \dim W$ then no linear map $T \in L(V, W)$ is surjective.
- if $T \in L(V, W)$ is injective and $(v_1, ..., v_k) \subset V$ is linearly independent then $(T(v_1), ..., T(v_k)) \subset W$ is linearly independent.
- if $T \in L(V, W)$ is surjective and $(v_1, ..., v_m)$ spans V then $(T(v_1), ..., T(v_m))$ spans W.
- -L(V,W) is a vector space over F; it had dim $L(V,W)=\dim V\dim W$
- -L(V) is a vector space over F.
- $-T \in L(V)$ is injective if and only T is surjective if and only if T is invertible.
- V and W are isomorphic if and only if dim $V = \dim W$.
- if $(v_1, ..., v_n) \subset V$ is a basis of V and $w_1, ..., w_n \in W$ arbitrary, then there is a unique linear map $T \in L(V, W)$ such that $T(v_i) = w_i$.
- to any basis of V there is a dual basis of the dual space V'.