Math 110, Spring 2014. Solutions to HW1, 1.C Q8, Q12

8) EDIT: an easier example was outlined to me. I leabe my (very) involved example below. Hopefully it's of some use to someone...

Take $f(x)=x$ to be periodic with period 1 (so that $f(0)=f(1)=0$), and $g(x)=x$ to be periodic with period $\sqrt{2}$ (so that $g(0)=g(\sqrt{2})=0$. Then, $f+g$ is not periodic - if it were, say of period r, then we would have $(f+g)(r)=(f+g)(0)=f(0)+g(0)=0$. This implies that $f(r)=g(r)=0$, since $f(x) \geq 0$ and $g(x) \geq 0$, for every $x \in \mathbb{R}$. Thus, we must have that r is an integer (since $f(r)=0$) and that r is an integer multiple of $\sqrt{2}$. - say, $d=r=c \sqrt{2}$, for $c, d \in \mathbb{Z}$. Hence, we would have $\sqrt{2} \in \mathbb{Q}$, which is absurd.
(Involved example) Consider the periodic functions

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R} ; x \mapsto\left\{\begin{array}{l}
1, x \in[2 p, 2 p+1], p \in \mathbb{Z} \\
0, x \in(2 q+1,2(q+1)), q \in \mathbb{Z}
\end{array}\right. \\
g: \mathbb{R} \rightarrow \mathbb{R} ; x \mapsto\left\{\begin{array}{l}
0, x \in[2 \sqrt{2} p, 2 \sqrt{2} p+\sqrt{2}], p \in \mathbb{Z} \\
1, x \in(2 \sqrt{2} q+\sqrt{2}, 2 \sqrt{2}(q+1)), q \in \mathbb{Z}
\end{array}\right.
\end{gathered}
$$

So that f has period $2, g$ has period $2 \sqrt{2}$, and they are both 'step functions' (draw the graph of these functions when $x \in(-10,10)$, say).

Suppose that $(f+g)$ has period r. Then, in particular, for $x \in[0,1]$, we must have that

$$
(f+g)(x+r)=(f+g)(x)=f(x)+g(x)=1+0=1
$$

We claim that this is impossible: namely, we prove that if $s \geq 0$ is such that

$$
(f+g)(x+s)=1, \text { for } x \in[0,1]
$$

then $s=0$. Indeed, suppose that $s \neq 0$ and the above holds. Then, the interval $[s, s+1]$ must intersect a unique interval $J=[2 p, 2 p+1]$, for some (unique) $p \in \mathbb{Z}$ (think of dividing up the number line into successive closed and open intervals of length one). Hence, since for any $x \in J \cap[s, s+1]$ we have $f(x)=1$ (dy definition of f), we must have $g(x)=0$, for every $x \in J \cap[s, s+1]$ (since $1=f(x)+g(x)=(f+g)(x)=(f+g)(x-s)$).
Suppose that $J \neq[s, s+1]$. Moreover, assume that $2 p \in[s, s+1]$ (ie the unit interval $[s, s+1]$ intersects the 'left side' of J - draw a picture!). Since we have assumed that $J \neq[s, s+1]$, we have

$$
[s, s+1]=[s, 2 p) \cup[2 p, s+1]
$$

and both intervals are nonempty. Now, for $x \in[s, 2 p) \subset(2 p-1,2 p)$ we have $f(x)=0$, so that $g(x)=1$, and we've seen above that for $x \in[2 p, s+1]=J \cap[s, s+1]$, we have $f(x)=1$ and $g(x)=0$. Hence, $2 p$ must be a point where f and g simultaneously change values from 0 to 1 and vice versa. Hence, since we must have that $2 p=2 \sqrt{2} q$, for some $q \in \mathbb{Z}$, which implies that $\sqrt{2} \in \mathbb{Q}$, which is absurd. We obtain a similar absurdity if we assume that $2 p+1 \in[s, s+1]$. Hence, we must have that $J=[s, s+1]$ (ie, $s=2 p$, for some $p \in \mathbb{Z}$).

Since we have assumed that $s>0$, then we have $p>0$. Moreover, we've shown that $g(x)=0$, for every $x \in[s, s+1]$. Hence, $[s, s+1] \subset[2 \sqrt{2} q, 2 \sqrt{2} q++\sqrt{2}]$, for some q (by definition of g). It is then possible to show (I won't do it as this is getting pretty tedious!) that the left end points of $[s, s+1]$ and $[2 \sqrt{2} q, 2 \sqrt{2} q+\sqrt{2}]$, would have to agree (by considering that $(f+g)(x+s)=(f+g)(x)=1$, for $x \in(1, \sqrt{2})$, and with $f(x)=0, g(x)=1)$. Hence, we
would obtain that $2 p=s=2 \sqrt{2} q$, so that $\sqrt{2} \in \mathbb{Q}$, (here we'd use that $p>0, q>0$) which is again a contradiction. Hence, we must have $s=0 \ldots$! But if $s=0$, then it is not possible that $(f+g)(x+r)=1$, for $x \in[0,1]$, so that $(f+g)$ is not periodic of period r.
12) Let $U_{1}, U_{2}, U_{3} \subset V$. Assume that $U_{1} \cup U_{2} \cup U_{3}$ is a subspace of V. We split into two cases:

1) $U_{1} \cup U_{2}$ is a subspace of V - then, by $Q 11$, we have that $U_{1} \subset U_{2}$ or $U_{2} \subset U_{1}$. If $U_{1} \subset U_{2}$, say, then we are going to show that either $U_{1} \subset U_{3}$ and $U_{2} \subset U_{3}$, or that $U_{1} \subset U_{2}$ and $U_{3} \subset U_{2}$. Indeed, if we let $W=U_{1} \cup U_{2}\left(=U_{2}\right)$, then by applying Q11 again to $W \cup U_{3}$ (which is a subspace), we must have $W \subset U_{3}$ or $U_{3} \subset W$. That is, either $U_{1} \subset U_{2} \subset U_{3}$, or $U_{3} \subset U_{2}$ and $U_{1} \subset U_{2}$. If we assume that $U_{2} \subset U_{1}$ we can proceed similarly.
2) Suppose that $U_{1} \cup U_{2}$ is not a subspace, so that $U_{2} \not \subset U_{1}$ and $U_{1} \not \subset U_{2}$ (by Q11). Now, if $u_{1} \in U_{1}, u_{1} \notin U_{2}$, then for any $0 \neq c \in F$ we have $c u_{1} \in U_{1}, c u_{1} \notin U_{2}$ (can you see why?). Similarly, for any $u_{2} \in U_{2}, u_{2} \notin U_{1}$, we have that for any $0 \neq d \in F$, $d u_{2} \in U_{2}, d u_{2} \notin U_{1}$. Now, $u_{1}+u_{2} \in U_{1} \cup U_{2} \cup U_{3}$, since we've assumed it's a subspace. Hence, we must have that either

- $u_{1}+u_{2} \in U_{1}$ - which implies that $u_{2} \in U_{1}$, which is absurd;
- $u_{1}+u_{2} \in U_{2}$ - which implies that $u_{1} \in U_{2}$, which is absurd;
- $u_{1}+u_{2} \in U_{3}$.

Similarly, we can show that $2 u_{1}+u_{2} \in U_{3}$. Hence, we have

$$
u_{1}=\left(2 u_{1}+u_{2}\right)-\left(u_{1}+u_{2}\right) \in U_{3} .
$$

A similar argument shows that, for any $u_{2} \in U_{2}, u_{2} \notin U_{1}$, we have $u_{2} \in U_{3}$. Hence, if we define

$$
A=\left\{u_{1} \in U_{1} \mid u_{1} \notin U_{2}\right\} \neq \varnothing, B=\left\{u_{2} \in U_{2} \mid u_{2} \notin U_{1}\right\} \neq \varnothing,
$$

then we have $A \subset U_{3}, B \subset U_{3}$. Notice that

$$
U_{1} \cup U_{2}=A \cup B \cup\left(U_{1} \cap U_{2}\right),
$$

(think of Venn diagrams) so if we can show that $U_{1} \cap U_{2} \subset U_{3}$ then we are done!
Suppose that $U_{1} \cap U_{2} \not \subset U_{3}$, so that there is some $0 \neq w \in U_{1} \cap U_{2}, w \notin U_{3}$. Consider $u_{1}+w+u_{2}$, where $u_{1} \in A, u_{2} \in B$. Then, we have that $u_{1}+u_{2}+u_{3} \in U_{1} \cup U_{2} \cup U_{3}$, and we must have either

- $u_{1}+w+u_{2} \in U_{1}$, which implies that $u_{2} \in U_{1}$, since $\left(u_{1}+w\right) \in U_{1}$. But this can't be true, since $u_{2} \in B$.
- $u_{1}+w+u_{2} \in U_{2}$, which implies that $u_{1} \in U_{2}$, which is again a contradiction.
- So we must have that $u_{1}+w+u_{2} \in U_{3}$, but then this implies that $w \in U_{3}$, since $u_{1}, u_{2} \in U_{3}$ and so $u_{1}+u_{2} \in U_{3}$.

Since none of these outcomes is possible we have made a false assumption in supposing that $U_{1} \cap U_{2} \not \subset U_{3}$ (ie, we can't find such a w as above).

The result follows.

