Math 110, Spring 2014. Solutions to HW1, 1.C Q8, Q12

8) EDIT: an easier example was outlined to me. I leabe my (very) involved example below. Hopefully it's of some use to someone...

Take f(x) = x to be periodic with period 1 (so that f(0) = f(1) = 0), and g(x) = x to be periodic with period $\sqrt{2}$ (so that $g(0) = g(\sqrt{2}) = 0$. Then, f + g is not periodic - if it were, say of period r, then we would have (f + g)(r) = (f + g)(0) = f(0) + g(0) = 0. This implies that f(r) = g(r) = 0, since $f(x) \ge 0$ and $g(x) \ge 0$, for every $x \in \mathbb{R}$. Thus, we must have that r is an integer (since f(r) = 0) and that r is an integer multiple of $\sqrt{2}$. - say, $d = r = c\sqrt{2}$, for $c, d \in \mathbb{Z}$. Hence, we would have $\sqrt{2} \in \mathbb{Q}$, which is absurd.

(Involved example) Consider the periodic functions

$$f:\mathbb{R} o\mathbb{R}\ ;\ x\mapsto egin{cases} 1,\ x\in [2p,2p+1],p\in\mathbb{Z},\ 0,x\in (2q+1,2(q+1)),q\in\mathbb{Z},\ 0,x\in (2\sqrt{2}p,2\sqrt{2}p+\sqrt{2}],p\in\mathbb{Z},\ 1,x\in (2\sqrt{2}q+\sqrt{2},2\sqrt{2}(q+1)),q\in\mathbb{Z}. \end{cases}$$

So that f has period 2, g has period $2\sqrt{2}$, and they are both 'step functions' (draw the graph of these functions when $x \in (-10, 10)$, say).

Suppose that (f + g) has period r. Then, in particular, for $x \in [0, 1]$, we must have that

$$(f+g)(x+r) = (f+g)(x) = f(x) + g(x) = 1 + 0 = 1.$$

We claim that this is impossible: namely, we prove that if $s \ge 0$ is such that

$$(f+g)(x+s) = 1$$
, for $x \in [0, 1]$,

then s = 0. Indeed, suppose that $s \neq 0$ and the above holds. Then, the interval [s, s + 1] must intersect a unique interval J = [2p, 2p + 1], for some (unique) $p \in \mathbb{Z}$ (think of dividing up the number line into successive closed and open intervals of length one). Hence, since for any $x \in J \cap [s, s + 1]$ we have f(x) = 1 (dy definition of f), we must have g(x) = 0, for every $x \in J \cap [s, s + 1]$ (since 1 = f(x) + g(x) = (f + g)(x) = (f + g)(x - s)).

Suppose that $J \neq [s, s+1]$. Moreover, assume that $2p \in [s, s+1]$ (ie the unit interval [s, s+1] intersects the 'left side' of J - draw a picture!). Since we have assumed that $J \neq [s, s+1]$, we have

$$[s, s+1] = [s, 2p) \cup [2p, s+1],$$

and both intervals are nonempty. Now, for $x \in [s, 2p) \subset (2p-1, 2p)$ we have f(x) = 0, so that g(x) = 1, and we've seen above that for $x \in [2p, s+1] = J \cap [s, s+1]$, we have f(x) = 1 and g(x) = 0. Hence, 2p must be a point where f and g simultaneously change values from 0 to 1 and vice versa. Hence, since we must have that $2p = 2\sqrt{2}q$, for some $q \in \mathbb{Z}$, which implies that $\sqrt{2} \in \mathbb{Q}$, which is absurd. We obtain a similar absurdity if we assume that $2p + 1 \in [s, s+1]$. Hence, we must have that J = [s, s+1] (ie, s = 2p, for some $p \in \mathbb{Z}$).

Since we have assumed that s > 0, then we have p > 0. Moreover, we've shown that g(x) = 0, for every $x \in [s, s + 1]$. Hence, $[s, s + 1] \subset [2\sqrt{2}q, 2\sqrt{2}q + +\sqrt{2}]$, for some q (by definition of g). It is then possible to show (I won't do it as this is getting pretty tedious!) that the left end points of [s, s + 1] and $[2\sqrt{2}q, 2\sqrt{2}q + \sqrt{2}]$, would have to agree (by considering that (f + g)(x + s) = (f + g)(x) = 1, for $x \in (1, \sqrt{2})$, and with f(x) = 0, g(x) = 1). Hence, we

would obtain that $2p = s = 2\sqrt{2}q$, so that $\sqrt{2} \in \mathbb{Q}$, (here we'd use that p > 0, q > 0) which is again a contradiction. Hence, we must have s = 0...! But if s = 0, then it is not possible that (f + g)(x + r) = 1, for $x \in [0, 1]$, so that (f + g) is not periodic of period r.

12) Let U_1 , U_2 , $U_3 \subset V$. Assume that $U_1 \cup U_2 \cup U_3$ is a subspace of V. We split into two cases:

- 1) $U_1 \cup U_2$ is a subspace of V then, by Q11, we have that $U_1 \subset U_2$ or $U_2 \subset U_1$. If $U_1 \subset U_2$, say, then we are going to show that either $U_1 \subset U_3$ and $U_2 \subset U_3$, or that $U_1 \subset U_2$ and $U_3 \subset U_2$. Indeed, if we let $W = U_1 \cup U_2 (= U_2)$, then by applying Q11 again to $W \cup U_3$ (which is a subspace), we must have $W \subset U_3$ or $U_3 \subset W$. That is, either $U_1 \subset U_2 \subset U_3$, or $U_3 \subset U_2$ and $U_1 \subset U_2$. If we assume that $U_2 \subset U_1$ we can proceed similarly.
- 2) Suppose that U₁ ∪ U₂ is not a subspace, so that U₂ ⊄ U₁ and U₁ ⊄ U₂ (by Q11). Now, if u₁ ∈ U₁, u₁ ∉ U₂, then for any 0 ≠ c ∈ F we have cu₁ ∈ U₁, cu₁ ∉ U₂ (can you see why?). Similarly, for any u₂ ∈ U₂, u₂ ∉ U₁, we have that for any 0 ≠ d ∈ F, du₂ ∈ U₂, du₂ ∉ U₁. Now, u₁ + u₂ ∈ U₁ ∪ U₂ ∪ U₃, since we've assumed it's a subspace. Hence, we must have that either

-
$$u_1 + u_2 \in U_1$$
 - which implies that $u_2 \in U_1$, which is absurd

- $u_1 + u_2 \in U_2$ - which implies that $u_1 \in U_2$, which is absurd;

$$- u_1 + u_2 \in U_3.$$

Similarly, we can show that $2u_1 + u_2 \in U_3$. Hence, we have

$$u_1 = (2u_1 + u_2) - (u_1 + u_2) \in U_3$$

A similar argument shows that, for any $u_2 \in U_2$, $u_2 \notin U_1$, we have $u_2 \in U_3$. Hence, if we define

$$A = \{u_1 \in U_1 \mid u_1 \notin U_2\} \neq \emptyset, B = \{u_2 \in U_2 \mid u_2 \notin U_1\} \neq \emptyset$$

then we have $A \subset U_3$, $B \subset U_3$. Notice that

$$U_1\cup U_2=A\cup B\cup (U_1\cap U_2)$$
 ,

(think of Venn diagrams) so if we can show that $U_1 \cap U_2 \subset U_3$ then we are done!

Suppose that $U_1 \cap U_2 \not\subset U_3$, so that there is some $0 \neq w \in U_1 \cap U_2$, $w \notin U_3$. Consider $u_1 + w + u_2$, where $u_1 \in A$, $u_2 \in B$. Then, we have that $u_1 + u_2 + u_3 \in U_1 \cup U_2 \cup U_3$, and we must have either

- $u_1 + w + u_2 \in U_1$, which implies that $u_2 \in U_1$, since $(u_1 + w) \in U_1$. But this can't be true, since $u_2 \in B$.
- $u_1 + w + u_2 \in U_2$, which implies that $u_1 \in U_2$, which is again a contradiction.
- So we must have that $u_1 + w + u_2 \in U_3$, but then this implies that $w \in U_3$, since $u_1, u_2 \in U_3$ and so $u_1 + u_2 \in U_3$.

Since none of these outcomes is possible we have made a false assumption in supposing that $U_1 \cap U_2 \not\subset U_3$ (ie, we can't find such a *w* as above).

The result follows.