Math 110, Spring 2014. Dual Spaces Review

Let V be a vector space (over F). Recall that the dual space of V, denoted V^{\prime}, is the set of all linear maps from V to the one dimensional vector space F :

$$
V^{\prime}=\{T: V \rightarrow F \mid T \text { is a linear map }\} .
$$

Also, in Axler's notation, we write $V^{\prime}=L(V, F)$.
Important Remark: the vectors in V^{\prime} are (linear) functions. The zero vector in V^{\prime} is the zero function

$$
0_{V^{\prime}}: V \rightarrow F ; v \mapsto 0_{V} .
$$

FACTS:

1) V^{\prime} is a vector space over F, where we define addition and scalar multiplication as follows: let $T, S \in V^{\prime}$. We want to define $T+S \in V^{\prime}$ - thus, we need to define $T+S$ as a function (and make sure that it is linear!). We set

$$
T+S: V \rightarrow F ; v \mapsto T(v)+S(v) .
$$

You should check that $T+S$ is indeed a linear map/function/transformation. For a scalar $c \in F$ and $T \in V^{\prime}$ we define $c T \in V^{\prime}$ to be

$$
c T: V \rightarrow F ; v \mapsto c \cdot T(v)
$$

where the '.' denotes usual multiplication of scalars.
Remark: these may seem like 'obvious' definitions but we would technically need to check that all the axioms of a vector space are satisfied given these definitions of addition and scalar multiplication on V^{\prime}.
2) $\operatorname{dim} V^{\prime}=\operatorname{dim} V$, as we will see below.

Suppose for now that $V=F^{n}$. Then, in V there is an 'obvious' basis, namely the standard basis $S=\left(e_{1}, \ldots, e_{n}\right)$. Let's give some examples of elements in the dual space: consider the following functions, for $i=1, \ldots, n$,

$$
\phi_{i}: F^{n} \rightarrow F ; v=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \mapsto a_{i}
$$

so that, in words, ϕ_{i} is the function that 'picks out the $i^{\text {th }}$ entry of v '. This is a linear function (map/transformation/whatever) as is easily verified - if we add two column vectors u and v and pick out the $i^{t h}$ entry, then that is the same as picking out the $i^{\text {th }}$ entries of u and v and summing. A similar statement holds for scalar multiplication of vectors etc. Hence, $\phi_{i} \in V^{\prime}$.

Let's show that the list $\left(\phi_{1}, \ldots, \phi_{n}\right) \subset V^{\prime}$ is linearly independent. Suppose that we have a linear relation

$$
c_{1} \phi_{i}+\ldots c_{n} \phi_{n}=0_{V^{\prime}} .
$$

We want to show that $c_{1}=\ldots=c_{n}=0$. The above equation is an equality of functions so that we must have

$$
\left(c_{1} \phi_{1}+\ldots+c_{n} \phi_{n}\right)(v)=0_{V^{\prime}}(v)=0 \in F, \quad \text { for every } v \in V .
$$

This is the same as the infinite number of equations (one equation for each $v \in V$!) in the 'variables' c_{1}, \ldots, c_{n},

$$
c_{1} \phi_{1}(v)+\ldots+c_{n} \phi_{n}(n)=0, \quad \text { for every } v \in V ;
$$

remember that $\phi_{i}(v)$ is a scalar! In particular, the above equation must hold for $v=$ $e_{1}, e_{2}, \ldots, e_{n}$, giving the equations

$$
c_{1} \phi_{1}\left(e_{i}\right)+\ldots+c_{n} \phi_{i}\left(e_{n}\right)=0, \text { for } i=1, \ldots, n .
$$

Since $\phi_{i}\left(e_{j}\right) 0$, if $i \neq j$, and $\phi_{i}\left(e_{i}\right)=1$ (remember that ϕ_{i} picks out the $i^{\text {th }}$ entry) we must have

$$
c_{1}=0, c_{2}=0, \ldots, c_{n}=0 .
$$

Hence, the ϕ_{i} are linearly independent. This implies that $\operatorname{dim} V^{\prime} \geq n$.
What about other examples of elements in V^{\prime} ? Choose some arbitrary vector $u \in V$. Then, we can consider the function

$$
\beta_{u}: V \rightarrow F ; v \mapsto v \cdot u=v_{1} u_{1}+\ldots+v_{n} u_{n},
$$

where the output is the usual dot product of two vectors in F^{n}. Then, you should be able to check that $\beta_{u} \in V^{\prime}$, for every $u \in V$ (ie, that β_{u} is linear). In fact,
every element of V^{\prime} is of the form β_{u}, for a unique $u \in V$
We'll see this later on in the course.
Let's now show that $V^{\prime}=\operatorname{span}\left(\phi_{1}, \ldots, \phi_{n}\right)$: thus, we are going to show that if $\alpha \in V^{\prime}$ then there are scalars $c_{1}, \ldots, c_{n} \in F$ such that

$$
\alpha=c_{1} \phi_{1}+\ldots+c_{n} \phi_{n},
$$

an equality of functions. How do we find such c_{i} ? Well, we'll cheat and I'll tell you what they are... set

$$
c_{1}=\alpha\left(e_{1}\right), \ldots, c_{n}=\alpha\left(e_{n}\right) \in F
$$

Then, we are claiming that

$$
\alpha=\alpha\left(e_{1}\right) \phi_{1}+\ldots+\alpha\left(e_{n}\right) \phi_{n} .
$$

To check that this is true we use the following fact: (it might be a homework exercise...)
let $T, S \in L(V, W)$ be linear maps, and let $B=\left(v_{1}, \ldots, v_{n}\right)$ be a basis. Then, $T=S$ if and only if

$$
T\left(v_{1}\right)=S\left(v_{1}\right), \ldots, T\left(v_{n}\right)=S\left(v_{n}\right)
$$

We now apply this fact to the case $V=F^{n}, W=F$ to see that, in order to show that

$$
\alpha=\alpha\left(e_{1}\right) \phi_{1}+\ldots+\alpha\left(e_{n}\right) \phi_{n},
$$

we need only show that

$$
\alpha\left(e_{i}\right)=\left(\alpha\left(e_{1}\right) \phi_{1}+\ldots+\alpha\left(e_{n}\right) \phi_{n}\right)\left(e_{i}\right), \text { for } i=1, \ldots, n .
$$

But the RHS of this last equation is equal to

$$
\alpha\left(e_{1}\right) \phi_{1}\left(e_{i}\right)+\ldots+\alpha\left(e_{n}\right) \phi_{n}\left(e_{i}\right)=\alpha\left(e_{i}\right),
$$

by definition of ϕ_{i}. Hence, $V^{\prime}=\operatorname{span}\left(\phi_{1}, \ldots, \phi_{n}\right)$.
So, we have shown that $\left(\phi_{1}, \ldots, \phi_{n}\right)$ is a basis of V^{\prime}, so that $\operatorname{dim} V^{\prime}=n=\operatorname{dim} V$. This basis is called the dual basis (of S).
We can generalise this to idea as follows: if $B=\left(v_{1}, \ldots, v_{n}\right) \subset F^{n}$ is any basis of F^{n} then there exists a dual basis of B. It is defined as follows: since B is a basis any vector $v \in F^{n}$ can be written uniquely as

$$
v=c_{1} v_{1}+\ldots+c_{n} v_{n},
$$

for unique $c_{1}, \ldots, c_{n} \in F$. Since the c 's are unique we obtain a (linear) function

$$
[-]_{B}: F^{n} \rightarrow F^{n} ; v \mapsto[v]_{B}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

(This is the B-coordinate map). Notice that we have now defined a function (dependent upon $B!$)

$$
\alpha_{i}^{(B)}: F^{n} \rightarrow F ; v \mapsto c_{i}
$$

which is the function

'take a vector $v \in F^{n}$ to it's $i^{\text {th }}$ coordinate (with respect to B)'

Hence, when we write $[v]_{B}$ we should really write

$$
[v]_{B}=\left[\begin{array}{c}
\alpha_{1}^{(B)}(v) \\
\vdots \\
\alpha_{n}^{(B)}(v)
\end{array}\right]
$$

which, I must admit, looks pretty gross; but nevermind.
Now, the $\alpha_{i}^{(B)}$ are linear functions (check this! It follows because the B-coordinate map is linear) so that $\alpha_{i}^{(B)} \in\left(F^{n}\right)^{\prime}$. Moreover, we have the following fact:

$$
\left(\alpha_{1}^{(B)}, \ldots, \alpha_{n}^{(B)}\right) \text { is a basis of }\left(F^{n}\right)^{\prime}
$$

The proof is the same as the proof above: notice that $\alpha_{i}^{(S)}=\phi_{i}$, defined above. In particular, we have that any $\alpha \in\left(F^{n}\right)^{\prime}$ can be written as

$$
\alpha=\alpha\left(v_{1}\right) \alpha_{1}^{(B)}+\alpha\left(v_{2}\right) \alpha_{2}^{(B)}+\ldots+\alpha\left(v_{n}\right) \alpha_{n}^{(B)} .
$$

To check this you need only check that the LHS and RHS agree on the basis B.
Now, we can generalise the above considerations to any finite dimensional vector space V over F : let $B=\left(v_{1}, \ldots, v_{n}\right) \subset V$ be a basis of the finite dimensional vector space V (over F). Then, the dual basis of B is the basis

$$
\left(\alpha_{1}^{(B)}, \ldots, \alpha_{n}^{(B)}\right) \subset V^{\prime}
$$

where $\alpha_{i}^{(B)}$ is the function that, given an input $v \in V$, picks out the $i^{\text {th }}$ entry in the B-coordinate vector $[v]_{B}$. Moreover, if $\alpha \in V$ then we have

$$
\alpha=\alpha\left(v_{1}\right) \alpha_{1}^{(B)}+\ldots+\alpha\left(v_{n}\right) \alpha_{n}^{(B)} \in V^{\prime} .
$$

As an example consider the basis

$$
B=\left(v_{1}, v_{2}, v_{3}\right)=\left(\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \subset \mathbb{C}^{3} .
$$

Then, let's write $\phi_{1} \in\left(\mathbb{C}^{3}\right)^{\prime}$ as a linear combination of the dual basis of $B,\left(\alpha_{1}^{(B)}, \alpha_{2}^{(B)}, \alpha_{3}^{(B)}\right)$: we have the formula

$$
\phi_{1}=\phi_{1}\left(v_{1}\right) \alpha_{1}^{(B)}+\phi_{1}\left(v_{2}\right) \alpha_{2}^{(B)}+\phi_{1}\left(v_{3}\right) \alpha_{3}^{(B)}=\alpha_{1}^{(B)}+\alpha_{2}^{(B)}+\alpha_{3}^{(B)} .
$$

