
Math 110, Spring 2014. Dual Spaces Review

Let V be a vector space (over F ). Recall that the dual space of V , denoted V ′, is the set
of all linear maps from V to the one dimensional vector space F :

V ′ = {T : V → F | T is a linear map}.

Also, in Axler’s notation, we write V ′ = L(V ,F ).

Important Remark: the vectors in V ′ are (linear) functions. The zero vector in V ′ is the
zero function

0V ′ : V → F ; v 7→ 0V .

FACTS:

1) V ′ is a vector space over F , where we define addition and scalar multiplication as
follows: let T , S ∈ V ′. We want to define T + S ∈ V ′ - thus, we need to define T + S
as a function (and make sure that it is linear!). We set

T + S : V → F ; v 7→ T (v) + S(v).

You should check that T +S is indeed a linear map/function/transformation. For a scalar
c ∈ F and T ∈ V ′ we define cT ∈ V ′ to be

cT : V → F ; v 7→ c · T (v),

where the ‘·’ denotes usual multiplication of scalars.

Remark: these may seem like ‘obvious’ definitions but we would technically need to
check that all the axioms of a vector space are satisfied given these definitions of addition
and scalar multiplication on V ′.

2) dimV ′ = dimV , as we will see below.

Suppose for now that V = F n. Then, in V there is an ‘obvious’ basis, namely the standard
basis S = (e1, ... , en). Let’s give some examples of elements in the dual space: consider the
following functions, for i = 1, ... , n,

φi : F n → F ; v =

a1...
an

 7→ ai ,

so that, in words, φi is the function that ‘picks out the i th entry of v ’. This is a linear function
(map/transformation/whatever) as is easily verified - if we add two column vectors u and v
and pick out the i th entry, then that is the same as picking out the i th entries of u and v and
summing. A similar statement holds for scalar multiplication of vectors etc. Hence, φi ∈ V ′.

Let’s show that the list (φ1, ... ,φn) ⊂ V ′ is linearly independent. Suppose that we have a linear
relation

c1φi + ... cnφn = 0V ′ .

We want to show that c1 = ... = cn = 0. The above equation is an equality of functions so
that we must have

(c1φ1 + ... + cnφn)(v) = 0V ′(v) = 0 ∈ F , for every v ∈ V .
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This is the same as the infinite number of equations (one equation for each v ∈ V !) in the
‘variables’ c1, ... , cn,

c1φ1(v) + ... + cnφn(n) = 0, for every v ∈ V ;

remember that φi (v) is a scalar! In particular, the above equation must hold for v =
e1, e2, ... , en, giving the equations

c1φ1(ei ) + ... + cnφi (en) = 0, for i = 1, ... , n.

Since φi (ej)0, if i 6= j , and φi (ei ) = 1 (remember that φi picks out the i th entry) we must have

c1 = 0, c2 = 0, ... , cn = 0.

Hence, the φi are linearly independent. This implies that dimV ′ ≥ n.

What about other examples of elements in V ′? Choose some arbitrary vector u ∈ V . Then,
we can consider the function

βu : V → F ; v 7→ v · u = v1u1 + ... + vnun,

where the output is the usual dot product of two vectors in F n. Then, you should be able to
check that βu ∈ V ′, for every u ∈ V (ie, that βu is linear). In fact,

every element of V ′ is of the form βu, for a unique u ∈ V

We’ll see this later on in the course.

Let’s now show that V ′ = span(φ1, ... ,φn): thus, we are going to show that if α ∈ V ′ then
there are scalars c1, ... , cn ∈ F such that

α = c1φ1 + ... + cnφn,

an equality of functions. How do we find such ci? Well, we’ll cheat and I’ll tell you what they
are... set

c1 = α(e1), ... , cn = α(en) ∈ F .

Then, we are claiming that
α = α(e1)φ1 + ... + α(en)φn.

To check that this is true we use the following fact: (it might be a homework exercise...)

let T , S ∈ L(V ,W ) be linear maps, and let B = (v1, ... , vn) be a basis. Then, T = S if
and only if

T (v1) = S(v1), ... ,T (vn) = S(vn).

We now apply this fact to the case V = F n,W = F to see that, in order to show that

α = α(e1)φ1 + ... + α(en)φn,

we need only show that

α(ei ) = (α(e1)φ1 + ... + α(en)φn)(ei ), for i = 1, ... , n.
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But the RHS of this last equation is equal to

α(e1)φ1(ei ) + ... + α(en)φn(ei ) = α(ei ),

by definition of φi . Hence, V ′ = span(φ1, ... ,φn).

So, we have shown that (φ1, ... ,φn) is a basis of V ′, so that dimV ′ = n = dimV . This basis
is called the dual basis (of S).

We can generalise this to idea as follows: if B = (v1, ... , vn) ⊂ F n is any basis of F n then there
exists a dual basis of B. It is defined as follows: since B is a basis any vector v ∈ F n can be
written uniquely as

v = c1v1 + ... + cnvn,

for unique c1, ... , cn ∈ F . Since the c’s are unique we obtain a (linear) function

[−]B : F n → F n ; v 7→ [v ]B =

c1...
cn

 .

(This is the B-coordinate map). Notice that we have now defined a function (dependent
upon B!)

α
(B)
i : F n → F ; v 7→ ci

which is the function

’take a vector v ∈ F n to it’s i th coordinate (with respect to B)’

Hence, when we write [v ]B we should really write

[v ]B =

 α
(B)
1 (v)

...

α
(B)
n (v)


which, I must admit, looks pretty gross; but nevermind.

Now, the α
(B)
i are linear functions (check this! It follows because the B-coordinate map is

linear) so that α
(B)
i ∈ (F n)′. Moreover, we have the following fact:

(α
(B)
1 , ... ,α

(B)
n ) is a basis of (F n)′

The proof is the same as the proof above: notice that α
(S)
i = φi , defined above. In particular,

we have that any α ∈ (F n)′ can be written as

α = α(v1)α
(B)
1 + α(v2)α

(B)
2 + ... + α(vn)α

(B)
n .

To check this you need only check that the LHS and RHS agree on the basis B.

Now, we can generalise the above considerations to any finite dimensional vector space V over
F : let B = (v1, ... , vn) ⊂ V be a basis of the finite dimensional vector space V (over F ). Then,
the dual basis of B is the basis

(α
(B)
1 , ... ,α

(B)
n ) ⊂ V ′,
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where α
(B)
i is the function that, given an input v ∈ V , picks out the i th entry in the B-coordinate

vector [v ]B . Moreover, if α ∈ V then we have

α = α(v1)α
(B)
1 + ... + α(vn)α

(B)
n ∈ V ′.

As an example consider the basis

B = (v1, v2, v3) =

 1
−1
0

 ,

 1
0
−1

 ,

1
1
1

 ⊂ C3.

Then, let’s write φ1 ∈ (C3)′ as a linear combination of the dual basis of B, (α
(B)
1 ,α

(B)
2 ,α

(B)
3 ):

we have the formula

φ1 = φ1(v1)α
(B)
1 + φ1(v2)α

(B)
2 + φ1(v3)α

(B)
3 = α

(B)
1 + α

(B)
2 + α

(B)
3 .
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