
Worksheet 2/26. Math 110, Spring 2014. Solutions

These problems are intended as supplementary material to the homework exercises and
will hopefully give you some more practice with actual examples. In particular, they may be
easier/harder than homework. Remember that F ∈ {R,C}. Send me an email if you have any
questions!

Dual things; annhilators

1. Consider the linear map

T : F 3 → F 4 ; v =

x1(v)
x2(v)
x3(v)

 7→


x1(v)− 2x3(v)
0

x1(v) + x2(v) + x3(v)
3x2(v) + x3(v)

 .

i) Let S4 ⊂ F 4 be the standard basis, and let S ′4 = (y1, ... , y4) be the dual basis of S ′4; similarly,
let S3 ⊂ F 3 be the standard basis and let S ′3 = (x1, x2, x3) be the dual basis of S3. What is
T ′(yi ), for each i = 1, ... , 4? (Here T ′ ∈ L((F 4)′, (F 3)′) is the dual map of T )

ii) Consider the linear functional

α : F 4 → F ; v =


y1(v)
y2(v)
y3(v)
y4(v)

 7→ −y1(v) + 3y3(v) + y4(v).

Write α as a linear combination of S ′4, ie, find scalars a, b, c , d ∈ F such that

α = ay1 + by2 + cy3 + dy4.

iii) Write T ′(α) ∈ (F 3)′ as a linear combination of S ′3, ie, find scalars p, q, r ∈ F such that

T ′(α) = px1 + qx2 + rx3.

Solution:

i) Recall that we have T ′(yi ) is the linear functional on F 3 defined as the composition

F 3 T→ F 4 yi→ F

So, in order to understand this linear map it suffices to write it in terms of the dual basis
S ′3: thus we have

T ′(yi ) = a1x1 + a2x2 + a3x3, a1, a2, a3 ∈ F

Recall that we can determine the scalars aj by evaluating T ′(yi )(ej), where ej ∈ S3 are
the standard basis vectors of F 3. Thus, we have (for i = 1)

T ′(y1)(e1) = (y1 ◦ T )(e1) = 1, T ′(y1)(e2) = (y1 ◦ T )(e2) = 0,

T ′(y1)(e3) = (y1 ◦ T )(e1) = −2.

Hence, we have
T ′(y1) = x1 − 2x3.
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Similarly, we have

T ′(y2)(e1) = (y1 ◦ T )(e1) = 0, T ′(y2)(e2) = (y2 ◦ T )(e2) = 0,

T ′(y2)(e3) = (y2 ◦ T )(e1) = 0.

Hence,
T ′(y2) = 0.

We also find
T ′(y3) = x1 + x2 + x3, T ′(y4) = 3x2 + x3.

ii) Remember that we have

α(e1) = a, α(e2) = b, α(e3) = c, α(e4) = d .

Hence, we have
α = −y1 + 3y3 + y4.

iii) The dual linear map is, funnily enough, linear! Hence, we have

T ′(α) = T ′(−y1 + 3y3 + y4) = −T ′(y1) + 3T ′(y3) + T ′(y4).

Using i) we find
T ′(α) = 2x1 + 6x2 + 6x3.

2. Do the same problems above (with appropriate adjustments!) for the linear map

T : F 3 → F 2 ; v =

x1(v)
x2(v)
x3(v)

 7→ [
x1(v) + x2(v)− x3(v)

x1(v) + 2x2(v) + 3x3(v)

]
,

and the linear functional

α : F 2 → F ; v =

[
y1(v)
y2(v)

]
7→ y1(v).

Solution: You have to follow the same procedure as Q1 - ie, do parts i), ii), iii). You should
find that

T ′(α) = x1 + x2 − x3.

3. FACT: Elements of (F n)′ may be thought of as the vector space Mat1,n(F ) of 1×n matrices
(with entries in F ). Make this identification.

i) Given a vector v ∈ F n and A ∈ Mat1,n(F ), verify that Av can be considered as a scalar.

ii) Let B =

([
1
1

]
,

[
−1
−3

])
⊂ C2, a basis of C2. What are the row-vectors (ie, 1× n matrices)

A1,A2 ∈ Mat1,n(C) such that (A1,A2) is the dual basis of B? (Hint: what equations must A1

and A2 satisfy? )

iii) Write A1,A2 as linear combinations of elements of the dual basis of S2 (the standard basis
of C2). (You’ll need to think which row vectors the elements of S ′2 correspond to...)
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iv) Consider the linear map

T : C2 → C2 ; v 7→
[

1 2
0 −1

]
v .

If we denote S ′2 = (x1, x2), then write T ′(x1) and T ′(x2) as linear combinations of S ′2. Can you
find a matrix A ∈ Mat2(C) such that

T ′ : (C2)′ → (C2)′ ; α 7→ αA?

Here we are considering elements of (C2)′ as row-vectors. Is the matrix A related to the matrix
defining T in any way?

Solution:

i) A is a 1× n matrix, and v is a n× 1 matrix. Hence, their product Av is a 1× 1 matrix,
which is the same things as a scalar.

ii) Denote B = (v1, v2) Then, we must have that

A1v1 = 1, A1v2 = 0, A2v1 = 0, A2v2 = 1.

So, if we denote A1 = [a b] and A2 = [c d ] then we need

a + b = 1, −a− 3b = 0, c + d = 0, −c − 3d = 1.

We can write these equations in the form[
a b
c d

] [
1 −1
1 −3

]
=

[
1 0
0 1

]
Hence, we need to determine the inverse of the matrix[

1 −1
1 −3

]
;

this is the matrix

−1

2

[
−3 1
−1 1

]
,

so that

A1 =

[
3

2

−1

2

]
, A2 =

[
1

2

−1

2

]
iii) Since we have

A1 = A1(e1)x1 + A1(e2)x2, A2 = A2(e1)x1 + A2(e2)x2,

we see that

A1 =
3

2
x1 −

1

2
x2, A2 =

1

2
x1 −

1

2
x2.

So, we notice that the row vector [1 0] corresponds to the dual basis vector x1, and [0 1]
corresponds to x2.
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iv) PRoceeding as in Q1, Q2, you will find that

T ′(x1) = x1 + 2x2, T ′(x2) = −x2.

Thus, if we let

A =

[
1 0
2 −1

]
,

then we have that the row vector αA corresponds to T ′(α). Thus, we have that this
matrix A is the transpose of the matrix defining T .

4. Let

U =



v1
v2
v3
v4

 ∈ F 4 v1 + v4 = 0
v2 − v3 = 0

 ⊂ F 4;

this is a subspace of F 4.

i) Determine a basis B = (u1, u2) of U. Extend this basis to a basis C of F 4.

ii) Let C ′ = (α1, ... ,α4) be the dual basis of C . Write αi as a linear combination of the
elements of S ′4 = (x1, x2, x3, x4) (the dual basis of the standard basis of F 4).

iii) Prove that (α3,α4) is a basis of U◦, the annhilator of U. (Hint: you don’t need to show
that these functionals span U◦!)

iv) Prove that x1 + x4, x2 − x3 ∈ U◦.

v) (Harder) Suppose that A is an m×n matrix with entries in F . Suppose that U = null(A) ⊂
F n. Can you find a spanning list of U◦? Can you find a basis of U◦?

Solution:

i) We see that if v ∈ U then we have

v =


v1
v2
v3
v4

 =


−v4
v3
v3
v4

 = v3


0
1
1
0

+ v4


−1
0
0
1


Thus, the two vectors above must span U. Moreover, they are linearly independent
(obviously) so that they form a basis (u1, u2), where

u1 =


0
1
1
0

 , u2 =


−1
0
0
1

 .

You can check that the list (u1, u2, e1, e2) is linearly independent (by row-reducing the
matrix whose columns are these vectors and verifying there is a pivot in each row, for
example).
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ii) We have
α1 = α1(e1)x1 + α1(e2)x2 + α1(e3)x3 + α1(e4)x4

Since we have
1 = α1(u1) = α1(e2 + e3) = α1(e2) + α1(e3),

and α1(e2) = 0 - because e2 is a vector in the basis C , and using the definition of the
dual basis C ′ - we have α1(e3) = 1. Similarly, we find that α1(e4) = 0 - using that
α1(u2) = 0. Hence, α1 = x3.

In a similar way we find α2 = x4.

Now, we have that

α3 = α3(e1)x1 + α3(e2)x2 + α3(e3)x3 + α3(e4)x4

So, we must have

0 = α3(u1) = α3(e2 + e3) = α3(e2) + α3(e3) = 0 + α3(e3),

because α3(e2) = 0 - α3 is the dual basis vector of e1, when we consider e1 as a vector
in the basis C . Similarly, we have

0 = α3(u2) = α3(−e1 + e4) = −α3(e1) + α3(e4) = −1 + α3(e4) =⇒ α3(e4) = 1.

Hence, α3 = x1 + x4. Proceeding in a similar manner we find α4 = x2 − x3.

iii) You can verify that

α3(u1) = α3(u2) = α4(u1) = α4(u2) = 0.

Hence, we have α3,α4 ∈ U◦ and, since (α3,α4) is linearly independent and dimU◦ =
4− dimU = 2, we have that (α3,α4) is a basis of U◦.

iv) This is trivial, by part iii).

v) Note that we have

U = null

([
1 0 0 1
0 −1 −1 0

])
and that we’ve seen that x1 + x4, x2− x3 are a basis of U◦. These functionals correspond
to the row vectors [1 0 0 1] and [0 1 − 1 0] respectively. Hence, we guess(!) that in the
general case, if we have A = [aij ] then

α1 =
n∑

j=1

a1jxj , ... ,αm =
n∑

j=1

amjxj

are elements of U◦ - ie, the rows of A correspond to a spanning list of U◦. This is indeed
true (but I will not prove it - give it a go yourself). To determine a basis of U◦ we
row reduce A to reduced echelon form, then the rows of the reduced echelon form will
correspond to a basis of U◦ - can you see why? It’s enough to note that the rows will be
linearly independent and that dimU◦ = dim col(A) (why?).
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