
Worksheet 1/22. Math 110, Spring 2014. Solutions

These problems are intended as supplementary material to the homework exercises and
will hopefully give you some more practice with actual examples. In particular, they may be
easier/harder than homework. Send me an email if you have any questions!

Vector spaces; subspaces

1. Which of the following sets V are vector spaces over R (Note: this is changed from the
worksheet handed out in discussion.), with the given vector addition and scalar multiplica-
tion? You will need to check all of the axioms! (Sorry...)

i) V = {(x , y , z) ∈ R3 | x + y + z = 0} ⊂ R3, with the ‘usual’ addition of vectors and
scalar multiplication inherited from R3.

ii) V = {(x , y , z) ∈ R3 | x + y + z = π} ⊂ R3, with the ‘usual’ addition of vectors and
scalar multiplication inherited from R3.

iii) Let B =

[
0 1
0 0

]
and

V = {2× 2 matrices A with real entries | AB = 0 (the zero 2× 2 matrix)} ⊂ Mat2(R),

with the ‘usual’ addition of vectors and scalar multiplication inherited from Mat2(R), the
set of all 2× 2 matrices with real entries.

iv) (Tricky!) V = {(1, y , z) ∈ R3} ⊂ R3, where we define vector addition as

(1, y , z) + (1, u, v) = (1, y + u, z + v),

and scalar multiplication as

c · (1, y , z) = (1, cy , cz), c ∈ R.

Note: For this example you will need to say what an appropriate zero vector in V should
be.

Solution:

i) First we need to check whether the notions of addition and scalar multiplication are well-
defined - that is, if I give you any two vectors u, v ∈ V is there sum u + v also in V , and
if c ∈ R is cv ∈ V ? Well, let u = (u1, u2, u3), v = (v1, v2, v3) ∈ V . Thus, we know that

u1 + u2 + u3 = 0, v1 + v2 + v3 = 0.

Now, u + v = (u1 + v1, u2 + v2, u3 + v3) and we need to check if the coordinates sum to
0 to show that u + v ∈ V . Indeed,

(u1 + v1) + (u2 + v2) + (u3 + v3) = (u1 + u2 + u3) + (v1 + v2 + v3) = 0 + 0 = 0.

Hence, we see that u + v ∈ V and our notion of addition that we’ve defined in V is
well-defined. Also, we have cv = (cv1, cv2, cv3) and

cv1 + cv2 + cv3 = c(v1 + v2 + v3) = c .0 = 0.
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Hence, cv ∈ V so our notion of scalar multiplication is well-defined.

Commutativity and associativity of addition have already been verified in Axler’s book
(since they are inherited from R3).

(additive identity) the obvious choice is the zero vector in R3 (it is indeed an element in
V !). Since every v ∈ V is also a vector in R3 (because V ⊂ R3) then we know that,
for every v ∈ V ⊂ R3, we have v + 0V = v , as the additive identity axiom holds in R3.
Hence, the additive identity axiom hols for V also. (This kind of seems like we’ve done
nothing here, but we have! Make sure you can appreciate the previous argument)

(additive inverse) let v = (x , y , z) ∈ V . We need to show that there is w ∈ V such that
v + w = 0V , where 0V is the zero vector. Of course, the obvious candidate for w is the
vector (−x ,−y ,−z); however, we need to check that w ∈ V : well, obviously we have
(−x) + (−y) + (−z) = −(x + y + z) = 0, since we have assumed that v ∈ V so that
x + y + z = 0. Hence, to any v ∈ V there is an additive inverse.

Again, the properties for scalar multiplication (multiplicative identity and distributive
properties) hold for V because they are inherited from R3.

ii) Let’s check to see if our notion of addition is well-defined: let u = (u1, u2, u3), v =
(v1, v2, v3) ∈ V , so that

u1 + u2 + u3 = π, v1 + v2 + v3 = π.

Then, we have u+v = (u1 +v1, u2 +v2, u3 +v3) and we need to check if the coordinates
sum to π, so that u + v ∈ V . However, now we have

(u1 + v1) + (u2 + v2) + (u3 + v3) = (u1 + u2 + u3) + (v1 + v2 + v3) = π + π = 2π 6= π.

Hence, u + v /∈ V and our notion of addition is not well-defined. Thus, V with the given
definitions of addition and scalar multiplication is not a vector space (over R).

iii) For this example we need to recall some basis properties of matrix arithmetic (from Math
54): if X ,Y ,Z are 2× 2 matrices with real entries, c ∈ R, then

(X + Y )Z = XZ + YZ , (cX )Y = c(XY ).

As above we need to check that the notions of addition and scalar multiplication are
well-defined. Let X ,Y ∈ V be arbitrary, so XB = 0,YB = 0 - we want to show that
X + Y ∈ V , so that the notion of addition we have on V is well-defined. In order that
X +Y ∈ V we must have that X +Y satisfies the condition defining the set V , namely,
we need that (X + Y )B = 0. Recall our basic matrix arithmetic we find

(X + Y )B = XB + YB = 0 + 0 = 0.

Hence, X + Y ∈ V and addition is well-defined. Similarly, we must show that scalar
multiplication is well-defined. Let c ∈ R. Then, we need to check if cX ∈ V . Indeed,

(cX )B = c(XB) = c0 = 0.

Hence, we have that cX ∈ V and scalar multiplication is well-defined.
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Commutativity and associativity of addition hold since addition is inherited from Mat2(R),
which is a vector space (over R) (this should be Math 54 stuff). Similarly, the multi-
plicative identity and distributive properties axioms hold.

(additive identity) the obvious choice is the 2 × 2 zero matrix, which we’ll denote 0V .
We must check that 0V ∈ V first: indeed, we have

0VB = 0,

so that 0V ∈ V . Also, because 0V is the additive identity in Mat2(R) then, for any
X ∈ Mat2(R), we have X + 0V = X . In particular, for any X ∈ V we have X + 0V = X .
Hence, the additive identity axiom holds.

(additive inverse) this is similar to (i) - you just need to check that the additive inverse
you come up with is actually an element of V .

iv) First note that the addition and scalar multiplication are well-defined (in the same sense
as above).

(commutativity) let u = (1, x , y), v = (1, z ,w) ∈ V . Then, we have

u+v = (1, x , y)+(1, z ,w) = (1, x+z , y+w) = (1, z+x ,w+y) = (1, z ,w)+(1, x , y) = v+u.

The associativity axiom is similar. Can you see what to do for the multiplicative identity
and distributive properties axioms? (They should be straightforward, hopefully!)

Defining 0V = (1, 0, 0) you verify that this gives an additive identity for V , and that for
u = (1, x , y) an additive inverse is w = (1,−x ,−y) ∈ V . Hence, V is a vector space
over R.

2. All of the above sets are given as subsets of another vector space (which one?). Which of
these subsets are subspaces? For those subsets that you think are subspaces prove that they
are, in fact, subspaces.

Solution: Only i) and iii) are subspaces - the other two do not contain the zero vectors in
the larger vector spaces. To prove that i) and iii) are indeed subspaces (of R3 and Mat2(R)
respectively) you need to verify the three axioms

- 0R3 ∈ V

- if u, v ∈ V then u + v ∈ V (where the ‘+’ is the addition defined in the larger vector
space)

- if u ∈ V , c ∈ R, then c ·u ∈ V (where ‘·’ is the scalar multiplication defined in the larger
vector space).

We actually verified these conditions when we were checking that the notions of addition and
scalar multiplication were well-defined.

3. Consider the set
V = {ec | c ∈ R} = R>0,

and define an ‘addition’
ec ⊕ ed

def
= ec+d ,
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and a ‘scalar multiplication’

λ · ec def
= eλc .

Is V a real vector space when we define addition and scalar multiplication in this way? Prove
or explain why not.

Solution: The notions of addition and scalar multiplication are well-defined (the intended ‘sums’
and ‘scalar multiples’ are elements of V ). Moreover, commutativity and associativity of addition
are straightforward to verify (if you’d like for me to do this then just ask!).

(additive identity) let’s try 0V = e0 ∈ R>0. Then, for any u = ec ∈ V we have

u ⊕ 0V = ec ⊕ e0 = ec+0 = ec = u.

Hence, 0V = 1 is an additive identity.

(additive inverse) for u = ec ∈ V , we take w = e−c ∈ V - then u ⊕ w = 0V .

(mutliplicative identity) let u = ec ∈ V . Then, we have

1 · u = 1 · ec = e1c = ec = u.

Thus, this axiom is verified.

(distributive properties) let u = ec , v = ed ∈ V , a, b ∈ R. Then,

a·(u⊕v) = a·(ec⊕ed) = a·(ec+d) = ea(c+d) = eac+ad = eac⊕ead = (a·ec)⊕(a·ed) = (a·u)⊕(a·v).

The other property is similar.
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