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Introduction

A remark on references: the bulk of this talk uses [1], though we try for a dg perspective as laid out in [5]. The

expository note [2] were also useful and contains many examples, including that of the flag variety for SL3 and

the Grassmanian Grp2, 4q. A more complete description and combinatorial model of the equivariant cohomology of

Grassmanians is in [3], though we are unable to give much exposition here. We take a topological view in this note

– an algebraic view is probably at least partially known using techniques from derived algebraic geometry, though

the author was unable to find a reference. References to some of the general theory of dg algebras is in [4] [5] [6].

Much of the theory is readily generalized to cohomology with values in some constructible sheaf as in [1] but we

will not treat it in this note. All errors in these notes, which are sure to exist, are due to me. Corrections are very

welcome.

Conventions

Everything is over an algebraically closed field of characteristic zero. Our grading conventions will be cohomological,

i.e. differentials increase degree. Our topological spaces will always be “reasonable” in some sense – analytically

constructible, or simplicial complexes. Throughout these notes let K be a compact Lie group; results may hold in

greater generality but one should consult the references.

1 Two Koszul dual descriptions of equivariant cohomology on a space

with a group action

1.1 Cohomology of sheaves over BK

Suppose we wanted to define something called “equivariant cohomology” using usual cohomology. For example,

take the following naive definition.

Bad Definition. Let X be a topological space and K a topological group acting on X. Define the equivariant

cohomology

H‚KpXq :“ H‚pX{Kq.

This is bad because (1) if the action of K on X is not locally free, then X{K can be bad, e.g. non-Hausdorff,

and (2) this construction seems to give us strictly less information, i.e. about the group K. These two defects hint

at what should be the correct definition: we “replace X with a homotopy equivalent space with a free K-action.”

For every topological group K, there is a homotopically unique contractible space, the universal bundle EK

on which K acts freely. This can be constructed in a variety of ways: the Milnor construction, or delooping of
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simplicial groups, are two things that show up on nLab. We write EK{K by BK, the classifying space. Then, we

define:

Definition 1 (Borel construction). Let X be a topological space and K a topological group acting on X. Define

the equivariant cohomology to be the graded H‚Kpptq “ H‚pBGq-module

H‚KpXq :“ H‚pX ˆK EKq

where X ˆK EK “ pX ˆ EKq{K under the diagonal action.

Remark 1. There is a some ambiguity in the above definition, in particular, what do we mean by a “replace X

with a homotopy equivalent space with compatible G-action.” A more universal definition would be to take the

homotopy quotient, i.e. H‚KpXq :“ H‚pX{hKq, whatever that means.

Exercise 1. Show that the above definition is homotopy-invariant and that it does not depend on the particular

space X̃ we choose.

Remark 2. If K acts freely on X, then H‚KpXq “ H‚pX{Kq. In particular, for any group K, we have H‚KpKq “ C.

Example 1 (Action of a torus). Let the Lie algebra T “ Sn » pC˚qn be the compact real or complex torus. Then,

ET “ pS8qn and BT “ pCP8qn. So H‚T pptq “ Crts “ St˚ with degpt˚q “ 2.

Remark 3 (What I mean by sheaves over BK). Normally, we can realize singular cohomology as the derived

pushforward of the constant sheaf on X to a point. In the K-equivariant setting, instead we are thinking about

some sheaf on X ˆK BK, which we then push forward to BK.

1.2 Intermediate description: equivariant chains

I find it difficult to think of H‚T pXq as a module over H‚T pBKq geometrically, since BK tends to be a pretty big space

for even “small” groups K. We have an equivalent description of equivariant cohomology using a kind of equivariant

generalization of singular chains; we can get to equivariant cohomology by dualizing the resulting complex, but let

us remain in homology for exposition’s sake. We will sweep most details under the rug; a fuller exposition using

subanalytic sets can be found in section 3 of [1].

Definition 2. Let dimpKq “ k. The ith dimensional K-equivariant chains CK
i pXq consist of K-equivariant maps

C Ñ X, where C is a compact “reasonable” (possibly singular, subanalytic subsets of Rn) i` k-dimensional space

with a free K action. The boundary map is the usual boundary map.

Proposition 1. The cohomology of the complex of K-equivariant cochains is isomorphic to equivariant cohomology

defined above.

Example 2. Let T “ S1. Then, the equivariant chains in H‚pptq are given by compact spaces C with a locally free

S1 action with a tautological equivariant map C Ñ pt. We can list them: there is a free S1 action on S2n`1; for

n “ 0 this is the regular action, for n “ 1 this is the Hopf action. In general it is given by the unit length vectors

of the action of C˚ on Cn`1.

1.3 Pointwise action on chains, i.e. a module over the homology algebra

Later we will be interested verifying the condition that the action of H‚T pptq on H‚T pXq is free. To me, this is

difficult to get a handle on geometrically; easier is the following Koszul dual description where we think about the

action of K on points or chains in X. Chains on a space in general are a coalgebra with comultiplication induced

by the diagonal map and counit induced by the unique map K Ñ pt. If G also has a group action then C‚pKq is

an algebra (in fact, a Hopf algebra) as follows. The unit and group multiplication on K give a map K ˆK Ñ K,

which induces an algebra structure on C‚pKq, and the inverse on K is an antipode map. This allows us to define

an action of C‚pKq on C‚pXq by the “sweep action,” i.e. simply acting on the points of a chain by a chain in K.

Definition 3 (Sweep action). Let ξ P CjpXq and s P CipKq; then the action on points of s on ξ gives us another

subset, call it sξ. If this is a i` j dimensional chain, then define s ¨ ξ “ sξ. Otherwise, define s ¨ ξ “ 0.
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Example 3 (Action of a torus). The homology ring of the 1-torus T “ pS1qn is H‚pT q “ Λt, with degptq “ ´1.

Remark 4 (Interpretation of trivial action). Suppose there is a basis of H‚pXq consisting of K-closed chains. Then

the action of H‚pGq on H‚pXq is trivial.

2 Koszul duality for dg algeberas and formal cohomological models

The mantra for this section is that “the above two descriptions of equivariant cohomology are related by Koszul

duality, with the caveat that there could be an issue with passing from a chain complex of cochains to cohomology”

and that “Koszul duality interchanges free and trivial modules.” The first two subsections here give the necessary

background and may be a bit dry.

2.1 DG Algebras

We will first give a brief introduction to differential graded algebras, which one can think of as a natural algebra

object one would define in the category of complexes of vector spaces, with the below specified monoidal (tensor)

product.

Definition 4. A dg algebra is a chain complex C‚ with a multiplication map m : C‚ b C‚ Ñ C‚ which commutes

with the differential. The real data is the definition of the differential on the tensor product dpab bq “ pdaq b b`

p´1q|a|abpdbq, given by the Leibniz rule. A dg algebra is dg commutative if m commutes with switching the factors

in C‚ b C‚, i.e. ab “ p´1q|a|ba. Given a dg algebra A, the associated cohomology ring H‚pAq is the dg algebra

with trivial differentials given by taking cohomology of the complex.

Example 4. Singular cohomology is a dg algebra, with multiplication given by the cup product. This dg algebra

is not commutative, but dg commutative.

Remark 5 (Free dg algebras). In the category of commutative k-algebras, we have a construction for the universal

free algebra on a set of generators S, i.e. the polynomial ring krSs. In the category of commutative dg-k-algebras, we

have a similar construction, the difference that (1) we must specify the degree of each element of S and (2) we may

also specify the differentials of generators S on homogeneous-degree words in S with coefficients in k. Generators

in odd degree behave like exterior variables, and generators in even degrees behave like symmetric variables, and

differentials are defined on words by the dg Leibniz rule.

Remark 6 (Derived categories and Verdier quotients). We have a notion of derived categories for module categories

of dg-algebras. A construction of Drinfied [4] realizes Verdier quotients in the dg setting as follows: let C be a

dg-category and D a full subcategory. For objects X P D we want to “kill,” we freely adjoin HomC{DpX,Xq “

HomCpX,Xqrηs with degpηq “ ´1 and dpηq “ idX . One can use this construction to localize categories: we quotient

by the full subcategory whose objects consist of mapping cones of morphisms we wish to invert.

Example 5. In light of the above remark, we can write, with degpβq “ 2 and degpλq “ ´1,

H‚pS
1q “ krλs,

H‚S1pptq “ krβs,

where λ is an exterior variable and β a symmetric variable. Note that since complexes are cohomologically graded,

we put homology in negative degrees.

Remark 7 (Free dg module and dual free module). Let A be a dg algebra. As usual there is a free left A-module

which we write A^ (as in [6]). There is also a dual free module

A_ “ HomkpA
^, kq

where we treat A^ as a right A-module so that A_ is a left A-module. This will show up in a dg Koszul duality.
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Remark 8 (Dg categories). The full description of dg categories would be something like this. Let C be a monoidal

category, i.e. a category with a tensor product on objects satisfying some coherence axioms. In general we say a

category is enriched over C if the Hom-sets of that category are objects in C, and composition morphisms in C. An

algebra enriched over C is such a category with a single object. Given such a category, the category of left modules

is a functor from that category to C. The category of right modules is a functor from the opposite category.

If C is the category of k-modules, then a category enriched over C is said to be k-linear. If C is the category

of chain complexes over k with the above specific monoidal structure (satisfying the Leibniz rule), then categories

enriched over C are called k-linear dg-categories.

Example 6. Let A be a commutative ring and CdgpAq the dg category of whose objects are complexes of A-

modules and whose Hom-sets are the graded complex all graded maps of any degree (which do not have to respect the

differential), with differential f ÞÑ fd´p´1q|f |df . This is a useful notion; one can show that HipHomCdgpAqpX,Y qq “

HomKpAqpX,Y risq.

2.2 Formal A8 models for a dg algebra

A dg algebra may fail to be quasi-isomorphic to its cohomology algebra. The standard topological example is the

knot theory of the Borromean triple-linked rings. Likewise, a module over a dg algebra can also fail to be quasi-

isomorphic to its cohomology module. We will give many examples later; here we will introduce some words which

we won’t explain in detail. The interested reader may refer to [6].

Definition 5. An A8 algebra is a graded algebra with a first-order multiplication of degree 1 (i.e. a differential), a

second-order multiplication of degree 0 (i.e. the multiplication of a usual algebra), and higher order multiplications

of order n of degree 1´ n.

Remark 9 (Dg algebras are A8 algebras (and vice versa)). A dg algebra can be thought of as an A8 algebra by

simply letting the higher multiplications be zero. Under certain conditions every A8-algebra is quasi-isomorphic to

a dg algebra; this is not obvious (c.f. [6]).

Definition 6. Let A be a dg algebra. We will say that an A8 algebra HpAq is a formal An-model for A if it is

quasi-isomorphic to A and has trivial differential (i.e. 1-multiplication) and trivial i-multiplications for i ą n. Note

that n can be infinity. By necessity HpAq is the cohomology ring of A.

Example 7 (Every chain complex of vector spaces has an A2 formal model). This is essentially due to the fact that

every short exact sequence splits. Let V be a vector space with subspaces B Ă Z Ă V . We can write Z “ B ‘BK

and V “ Z ‘ ZK so that V “ B ‘ BK ‘ ZK. Then there is a map Z{B Ñ V which is given by the isomorphism

Z{B – BK postcomposed with inclusion. This argument is applied to every level of the chain complex and its

cohomology.

Proposition 2. Every dg algebra has a formal A8 model, i.e. is quasi-isomorphic to its cohomology as an A8-

algebra where the first-order multiplication is zero.

Remark 10. Essentially, A8 algebras give us another way to repackage the information in a dg algebra so that

we have no boundary maps at the cost of having higher multiplications.

Remark 11 (A8 modules). We can think of modules over an A8 algebra; there are “higher actions” of the algebra

on the module. These higher actions have a description in the action of a dg-algebra on a the cohomology of a chain

complex as well: the “higher cohomology operations.” Suppose A is a dg-algebra which acts on a chain complex

M . Let a P A and m P M , and suppose that rams “ 0 P H‚pMq, i.e. am P M is a coboundary killed by some m̃.

Then the “higher action” µ3pa, a,mq “ ram̃s.

Corollary 1. A dg module has a formal A2-model if and only if the higher cohomology operations vanish.

One should refer to section 13 of [1] and also [6] for a more complete description, as well as connections to cyclic

homology.

4



2.3 Koszul duality

We now focus on the specific case when T “ pC‚qn. Define S :“ H‚T p˚q “ St and Λ :“ H‚pT q “ Λt˚, where

degptq “ ´1 and degpt˚q “ 2. We use the conventions as in [5]; a notable difference in [?] is that their explicit

definition has both t and t˚ in positive degree.

Theorem 1 (Koszul duality for dg algebras). There is a derived equivalence

DpSq
RHomSpk,´q

//
DpΛq.

´b
L
Λk

oo

Furthermore, these equivalences identify trivial objects on the left with free objects on the right, and free dual objects

on the left with trivial objects on the right.

k Ø Λ

S_ Ø k

Taking the full triangulated subcategory, we have an equivalence:

DPerfpSq Ø DFinDimpΛq.

Dually, there is also a derived equivalence

DpSq
´b

L
Sk
//
DpΛq.

RHomΛpk,´q
oo

Furthermore, this equivalence identifies free objects on the left with trivial objects on the right, and trivial on the

left with free dual objects on the right.

k Ø Λ_

S Ø k

Taking the full triangulated subcategory, we have an equivalence:

DFinDimpSq Ø DPerfpΛq.

Proof. The functors RHompk,´q and ´ b k receive a right-action of RHompk, kq. The existence of these adjoint

functors is verified by the computation that RHomSpk, kq » Λ and RHomΛpk, kq » S. One uses the Koszul

resolution: krλsrβ˚s Ñ k where dpβ˚q “ λ (degpβ˚q “ ´2 and krβsrλ˚s Ñ k where dpλ˚q “ β (degpλ˚q “ 1). That

it is an equivalence follows essentially from the formalism of [5]; for an augmented k-dg-algebra, k is a compact

generator (i.e. the smallest full triangulated subcategory closed under infinite coproducts is the entire category).

There are two delicate issues in this theorem which I will address in the next two remarks.

Remark 12 (Opposite category). Both functors are contravariant; however, since S is commutative, DpSq “

DpSqop and we suppress this for exposition’s sake.

Remark 13 (Dual free object). Λ is a Frobenius algebra; what this means in a graded setting is that Λ_ – Λrns.

Thus if we use the second derived equivalence, free objects are identified with trivial objects on both sides. However,

the same is not true for the first derived equivalence.

The following will be useful in identifying equivariant cohomology with usual cohomology. The proof is by

standard adjunctions.

Proposition 3. The forgetful functor intertwines with extension of scalars to k, i.e. let F be the forgetful functor.

If M is a S-module and N is a Λ-module, and M and N are Koszul dual, then k bL
S M “ HomΛpk,Nq and

k bL
Λ N “ HomSpk,Mq.
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2.4 Failure of Koszul duality in cohomology

Up to this point, we haven’t yet shown that Koszul duality actually corresponds with the two notions of equivariant

cohomology defined earlier. In fact, this is strictly speaking not true – the reason being that cohomology is not

always a formal model for a cochain complex without some extra A8-structure. Here we will show this failure by

example and find conditions for when cohomology is a formal A2-model.

Remark 14. One can readily see that H‚pT q is a formal model for C‚pT q and that H‚pBT q is a formal model for

C‚pBT q.

The following two examples will illustrate a failure of Koszul duality in cohomology; two spaces with different

actions detected by the cohomology side but not detected by the homology side.

Example 8 (The trivial S1 action on S3). If S1 acts on X trivially, then H‚T pXq “ pC ‘ Cr3sq b Crβs. On the

dual side of things, H‚pT q acts on H‚pXq trivially for degree reasons.

Example 9 (The Hopf action of S1 on S3 in cohomology). The Hopf action of S1 on S3 is free with quotient

S3{S1 “ S2. Then H‚T pXq “ C ‘ Cr´2s “ Crβs{β2 with degpβq “ 2; one determines the Crβs-action by thinking

about the map X ˆ pt Ñ X and the cochains rS1s ˆS1 rS3s ÞÑ rS3s. Dually, H‚pT q acts on H‚pXq trivially also for

degree reasons.

As expected, the problem is of formality.

Example 10 (The trivial action of S1 on S3 is formal). The trivial action of C‚pS
1q on C‚pS

3q is identically zero by

definition. Thus, a quasi-isomorphism of C‚pS
1q-modules C‚pS

3q – H‚pS
3q is simply an isomorphism of C-vector

spaces, which always exists.

Example 11 (The Hopf action of S1 on S3 on cochains). Now consider the Hopf action. We claim that it is not

formal. Indeed, there is a 2-chain in S3 which sweeps by the S1 action to the a representative of the fundamental

class. Thus, no map between C‚pS
3q and H‚pS

3q can be a quasi-isomorphism of C‚pS
1q-modules. In fact, one

can check that taking the Koszul dual of the krβ]-module krβs{β2 yields a dg-model for C‚pS
3q which is not

quasi-isomorphic to its cohomology.

However, if we give H‚pS
3q an A8 structure, a difference is detected. In fact, it is exactly the existence of these

higher cohomological operations that obstruct a quasi-isomorphism to cohomology.

Example 12 (Higher cohomological operations of S1 on S3). Take a point and sweep it by S1. The result is

homologous to zero by a the boundary of a 2-chain. The sweep action of S1 on this 2-chain is the fundamental

3-cycle. So we could say that the 3-action of the class rS1s on rpts P H‚pS
3q is rS3s.

For good measure, we will provide an example where the H‚pS
1q acton is not trivial but still formal. The dual

H‚S1pptq action is not free.

Example 13 (Three 2-spheres in a ring). Let X be three 2 spheres glued toegher at 0 and 8 to form a ring, and

let S1 act on each sphere by rotation fixing 0,8. One checks that H‚pXq “ C‘ Cr1s ‘ Cr3s‘3, and the S1 action

takes the 0-cycle to zero and the 1-cycle to the sum of the 3-cycles, i.e. the action is not trivial. One can check

that it is indeed formal – the 2-chain killing off the action of S1 on the 0-cycle is killed by the S1 action, so higher

cohomological operations vanish.

However, the “fundamental class” is a chain in H1
T pXq, but H3

T pXq is trivial, so the action is not free. I do not

know whether the module is formal or not.

We now state our promised result.

Proposition 4. The following are equivalent.

(1) H‚pXq is a formal (A2-)model and trivial over Λ

(2) H‚T pXq is a formal (A2-)model and free over S

(3) The double complex spectral sequence associated with computing k bL
S ´ collapses at E1

(4) The Eilenberg-Moore spectral sequence associated to the fibration X Ñ X ˆT ET Ñ BT collapses at E2

(5) Λ acts trivially on H‚pXq and the “higher cohomology operations” of Λ vanish, i.e. the minimal A8 model for

H‚pXq has trivial higher multiplications.
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Proof. For (1) and (2), it is a general fact of Koszul duality that RHompk,´q takes trivial objects to free objects

and kbL ´ takes free objects to trivial objects. Formality just means we are not really dealing with complexes, so

this result holds in the derived setting as well. (5) is easily seen to be equivalent to (1). The argument for (3) and

(4) can be found in [1].

Remark 15. Note that it is not true that H‚pXq is formal if and only if H‚T pXq is formal! Many examples above.

As a closing remark, note that we should have this kind of Koszul duality for any compact Lie group; see [7] for

a discussion and references.

Proposition 5. Let K be a compact Lie group. Then H‚pBKq is a free symmetric algebra, and H‚pKq is a free

exterior algebra.

3 The localization theorem, computing equivariant cohomology, ex-

amples

In this section we introduce the localization theorem, a nice tool for helping us compute equivariant cohomology.

The conditions of the theorem call for a free H‚T pptq-module; the just-stated proposition gives us another way to

view this condition.

3.1 The localization theorem

The following theorem is the main theorem of [1]. I have not looked carefully at the proof, but I include the lemma

that seems like it is somewhat key.

Theorem 2 (Localization theorem). Suppose that H‚T pXq is a free module over H‚T pptq. Let Xi be the set of ď i

dimensional orbits, and assume each has only finitely many strata. Then the sequence

0 Ñ H‚KpXq Ñ H‚KpX0q Ñ H‚KpX1, X0q

is exact.

Lemma 1. Let Y Ă X be a single orbit of positive dimension. Then H‚KpY q is a torsion module over H‚Kpptq.

Proof. The rough idea is that, let S be the stabilizer of the orbit, and let T “ SˆP . Then we should have P acting

(almost?) freely on Y , so one can check that the corresponding subalgebra Sp˚ Ă t˚ should act by torsion.

We now state some sufficient conditions. Here we copy part of the list in [1] of sufficient conditions for equivariant

formality, omitting the ones that don’t make sense in this note due to simplifications chosen.

Proposition 6. Let X be a space with an action of K. The following are sufficient conditions for a cohomology to

be equivariantly formal.

(1) Cohomology vanishes in odd degree.

(2) The Λ-action on homology is trivial and all higher operations vanish.

(3) The homology groups are generated by K-invariant subanalytic cycles.

(4) X can be decomposed into K-invariant cells.

(5) X is a smooth complex projective variety, and K “ pS1qr is the compact form of T “ pC˚qr.

(6) X is a compact symplectic manifold, and K acts on X be Hamiltonian vector fields.

(7) The homology of X vanishes in odd degrees, and H‚pXq has a basis of cycles which are closed under the action

of K.

All of our examples will be smooth projective complex algebraic varieties; in this case homology vanishes in odd

degrees, so all higher cohomology operations mush vanish by necessity of degrees, satisfying (7).
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3.2 The data of a space using the localization theorem

The localization theorem tells us that we can compute the equivariant cohomology of a space by looking at data

associated to its fixed points and one-dimensional orbits by carefully analyzing the maps in the theorem. We can

encode this data in a graph. Let T “ pC˚qn; in particular, T is abelian.

1. We want to identify H‚T pXq with a submodule of H‚T pX0q “
À

xPX0
St˚. So we should first lay out this

ambient object H‚T pX0q: for each T -fixed point in X, draw a node, which will represent a summand of H‚T pptq

corresponding to that fixed point.

2. Every one-dimensional orbit O is canonically (since T is abelian it does not matter which point we choose to

compute the stabilizer) isomorphic to T {StabpOq – C˚ and has two fixed points in its closure. In particular,

we note that H‚T pOq “ Crss “ SsK. where s is the Lie algebra of StabpOq. For each orbit, draw an edge

between these two nodes. By choosing a notion of positive roots of T we can assign each edge a direction.

This gives us a partial ordering on the nodes. One way to depict this is to let the “northern” nodes be more

positive.

3. The map H‚T pX0q Ñ H‚T pX1, X0q is the standard coboundary map. We can think of it locally; let F “ ts, tu

be a set of fixed points in the closure of a single one-dimensional orbit O – C˚, where s is a source and t

is a target (sink). Then we have a map H‚T pF q “ krts b ts, tu Ñ krss “ H‚T pOq. Explicitly, this map sends

fss`ftt ÞÑ fs´ft for fs, ft P krts “ St˚; we want fs´ft to be zero on the stabilizer s, i.e. fs´ft P krt{ss “ SsK.

This is a generated by a single nonzero vector in t˚. Label the edge with that vector.

4. The game is now to assign polynomials in St˚ to the nodes that satisfy the conditions. From this we can

determine a basis of the cohomology ring.

Example 14 (The simplest example). The simplest example of a torus action is the usual C˚-action on CP1.

Here we have two nodes corresponding to points tN,Su and a single edge, labeled by t, since there is no stabilizer.

Thus condition is that t | pN ´ pS . We can find a basis by setting pS “ p0 and then pN “ p0 ` tp1; the basis is

ppS , pN q “ p1, 1q, p0, tq. Thus H‚S1pCP1
q “ Crβs b Crβs{β2 “ H‚S1pptq bH‚pCP1

q. As a side remark, the 0-cycle is

the inclusion of S1 into an orbit, and the 2-cycle is the Hopf fibration map.

3.3 Example: flag varieties

The following two examples will only be sketched. They are probably best left as exercises, though the following

exposition might be useful if the reader is ever stuck. The reader should refer to [2] and [3] for some nice graphs

depicting the answers, though I use some different conventions which I lay out here. I will draw some graphs and

scan it in the handwritten notes that accompany my talk, since I don’t really want to spend forever messing around

with xymatrix.

Let G be a semisimple complex Lie group B a Borel and T Ă B a maximal torus. Let the Weyl group be

WT “ NpT q{T . Then we have the Bruhat decomposition G “ BWB and also the opposite Bruhat decomposition

G “ BopWB. We will use the former convention. The flag variety is G{B, and the fixed points are in bijection

with WT . Further we know that the usual cohomology is generated by the Schubert cells, i.e. the closures of

BwB{B Ă G{B.

We will explicitly do out the equivariant cohomology of the flag variety X “ B{G with G “ SL3 and B the

upper triangular matrices. We take T to be the diagonal matrices. Let t˚ have the basis:

t1

¨

˝

h1 0 0

0 h2 0

0 0 h3

˛

‚“ h1 ` h2 ´ 2h3 t2

¨

˝

h1 0 0

0 h2 0

0 0 h3

˛

‚“ h2 ` h3 ´ 2h1.

One can check that the fixed points are the permutation matrices, directly or by noting that they are representa-

tives of NpT qB{B. The one-dimensional orbits are given by matrices that look like:

¨

˝

0 0 1

a 1 0

1 0 0

˛

‚ and not like:
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¨

˝

1 a 0

0 1 0

0 0 1

˛

‚, i.e. the parameter should not be to the right of any 1. Taking a Ñ 0 we find one fixed point and

aÑ8 we find the other, which is obtained by taking a “ 0 and swapping the rows as in the following example:

lim
aÑ8

¨

˝

0 0 1

a 1 0

1 0 0

˛

‚“

¨

˝

0 0 1

1 0 0

0 1 0

˛

‚

We already chose the positive (or negative? I do not really care as long as they are consistent) roots. Let the

identity matrix be on the bottom. An edge labeled with t1 will swap the first and second rows, an edge labeled

with t2 will swap the second and third rows, and an edge labeled with t1 ` t2 will swap the first and third rows.

The equivariant Schubert cells can be determined as follows. Choose a node; all nodes below it in the order will be

nonzero, and all other nodes zero. This forces some conditions, which we will see by example.

3.4 Example: Grassmanians

We will use the following conventions: we want to represent a cell as a 2ˆ 4 matrix in reduced upper row echelon

form, i.e. the top-dimensional cell is
ˆ

1 0 ˚ ˚

0 1 ˚ ˚

˙

and the lowest-dimensional cell is
ˆ

0 0 1 0

0 0 0 1

˙

.

The combinatorial data we want to extra from a cell is the intersection with some transverse flag – we will take the

reverse flag

0 Ă xe4y Ă xe3, e4y Ă xe2, e3, e4y Ă C4

and take the dimensions of the intersections with the cells. For example, in the top-dimensional cell we have 00012

and for the low-dimensional cell we have 01222. We can re-hash this information by taking the differences between

successive integers to get a string of 0s and 1s, for example 0011 and 1100. These strings are recording the columns

that the 1s are in, reading from the right. The cells are in bijection with strings of length four with two 1s.

The action of the torus T “ pC˚q4 scales the columns of the matrix. Take the basis t1, t2, t3, t4 of t˚, where ti is

dual to the vector which corresponds to scaling the ith column. This action has a stabilizer which is the diagonal

scalar action, so really we have a torus action of T “ pC˚q4{p1, 1, 1, 1qC˚ – pC˚q3. However, the above basis is still

convenient – quotienting out by p1, 1, 1, 1q means we should always have that the sums of the coefficients of the ti
be zero. The fixed points are the matrices above without the stars, e.g.

ˆ

1 0 0 0

0 1 0 0

˙

The one-dimensional orbits are obtained by inserting any a in a column which does not have a 1 as follows, and

with limit switching the positions of 1 and a in the row:

lim
aÑ8

ˆ

1 0 0 0

0 1 a 0

˙

“

ˆ

1 0 0 0

0 0 1 0

˙

We can fix a sign convention by asking that the a’s be inserted only to the right of the 1s. Using the strings of 0s

and 1s, the one-dimensional orbits correspond to transpositions which change the string, i.e. swapping the first and

second positions in 1100 is not a one-dimensional orbit. The transposition pijq corresponds to ti ´ tj with some

sign convention. This should yield the diagram depicted in [3].
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[6] Bernhard Keller, Introduction to A-infinity algebras and modules, arXiv:math/9910179v2 (2001)

[7] MathOverflow, cohomology of BG, G compact Lie group, Question 61784

10


