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Abstract. Given an element w of a Coxeter group, let ai(w) be the number of
elements less than w in Bruhat order. A theorem of Björner and Ekedahl states
that if W is crystallographic, then ai(w) ≤ aj(w) for all 0 ≤ i < j ≤ `(w) − i.
Their proof uses the hard Lefschetz property in intersection cohomology. In this
note we extend Björner and Ekedahl’s theorem to all Coxeter groups using the hard
Lefschetz theorem for Soergel bimodules recently proved by Elias and Williamson.
As we explain, the parabolic case remains open.

1. Introduction

Let (W,S) be a Coxeter system with length function `, and let ≤ denote the
Bruhat order on W . Given w ∈ W , let [e, w] be the interval of elements y between
the identity e and w in Bruhat order, and let ai(w) := |{y ∈ [e, w] | `(y) = i}| be the
number of elements in [e, w] of length i. In this note we prove two theorems, both
originally proved by Björner and Ekedahl for crystallographic Coxeter groups. The
first concerns the “shape” of the interval [e, w]:

Theorem 1.1. Let w ∈ W . Then

(1) ai(w) ≤ aj(w) for all 0 ≤ i ≤ j ≤ `(w)− i.

Part of the motivation for studying the shape of [e, w] is a theorem of Carrell
and Peterson [Car94], which connects [e, w] to Kazhdan-Lusztig theory. Let Kxw(q)
denote the Kazhdan-Lusztig polynomial for x ≤ w. The Carrell-Peterson theorem
states that Kew(q) = 1 if and only if [e, w] is rank-symmetric, meaning that ai(w) =
a`(w)−i(w) for all i. Originally stated, the Carrell-Peterson theorem holds for every
Coxeter group satisfying the Kazhdan-Lusztig positivity conjecture, which states
that the coefficients of Kxw(q) are always non-negative. Recently the Kazhdan-
Lusztig positivity conjecture has been proven for all Coxeter groups by Elias and
Williamson [EW14], so the Carrell-Peterson theorem holds for all Coxeter groups
as well. When W is crystallographic, the elements w ∈ W index Schubert varieties
X(w), and Kew(q) = 1 if and only if X(w) is rationally smooth. Equivalently, X(w)
is rationally smooth if and only if the intersection cohomology Poincare polynomial
IPw(q) is equal to the Poincare polynomial Pw(q2) =

∑
i ai(w)q2i of [e, w].

The second theorem of Björner and Ekedahl relates the failure of rank-symmetry
of [e, w] to the first non-zero coefficient of Kew(q).

Theorem 1.2. Given w ∈ W , let Kew(q) = 1 +
∑

k≥1 bk(w)qk and IPw(q) =∑
k ck(w)q2k. For any k0 ≥ 0 and ζ ∈ Z, the following are equivalent:
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(a) ak(w) = a`(w)−k(w) for all 0 ≤ k < k0 and a`(w)−k0 − ak0 = ζ 6= 0.
(b) bk(w) = 0 for all 1 ≤ k < k0 and bk0(w) = ζ 6= 0.
(c) ak(w) = ck(w) for all 0 ≤ k < k0 and ck0(w)− ak0(w) = ζ 6= 0.

Note that if any of the conditions in Theorem 1.2 holds, then ζ > 0, a`(w)−k0(w) =
c`(w)−k0(w), and ak0(w) < ck0(w). We defer to Section 4 for the definition of IPw
when W is non-crystallographic.

Björner and Ekedahl’s proof of Theorem 1.1 for crystallographic W works as fol-
lows: First, they show that the etale cohomology H∗ := H∗(X(w)) of the Schubert
variety X(w) injects into the intersection cohomology IH∗ := IH∗(X(w)). Fur-
thermore, this injection is equivariant with respect to the action of the cohomology
algebra H∗ on IH∗. The hard Lefschetz theorem for intersection cohomology states
that, if L is multiplication by the first Chern class of an ample line bundle on X(w),
then Li : IH`(w)−i → IH`(w)+i is an isomorphism for all i ≥ 0 (we use the standard
cohomological grading, so IH∗ is non-zero only in even dimensions and L has degree
two). It follows that Li : H`(w)−i → H`(w)+i is injective for all i ≥ 0. It is well-known
that H2k(X(w)) has a Schubert basis indexed by the elements x ∈ W such that
x ≤ w and `(x) = k, so Theorem 1.1 follows immediately. The proof of Theorem 1.2
also uses the framework of intersection cohomology.

For non-crystallographic Coxeter groups, Schubert varieties are not defined. To
prove Theorems 1.1 and 1.2 for all Coxeter groups, we replace intersection coho-
mology with Soergel bimodules, and use the hard Lefschetz theorem for Soergel
bimodules due to Elias and Williamson [EW14]. Björner and Ekedahl’s proofs also
apply to the relative Bruhat intervals [e, w] ∩W J , where W J is the set of minimal
length coset representatives of some parabolic subgroup WJ , J ⊂ S. Unfortunately,
our proof of Theorems 1.1 and 1.2 for all Coxeter groups does not apply to relative
Bruhat intervals, due to the need for a hard Lefschetz theorem for parabolic Soergel
bimodules. Whether or not the hard Lefschetz theorem holds for parabolic Soergel
bimodules seems to be an interesting open question.

1.1. Acknowledgements. The authors would like to thank Ben Elias, Peter Fiebig,
and Chris McDaniel for helpful discussions and comments. The second author would
like to thank the organizers and attendees of the 2015 Oregon workshop on Soergel
bimodules for stimulating conversations.

1.2. Organization. In Section 2 we recall the structure ring of a Bruhat interval
(analogous to the cohomology ring of a Schubert variety). In Section 3 we explain
how this ring is connected with Soergel bimodules and the hard Lefschetz theorem.
Theorems 1.1 and 1.2 are proved in Section 4.

2. The structure algebra and Schubert basis

2.1. Moment graphs and structure algebra. Let G be an undirected graph with
vertex set V (G) and edge set E(G). A sheaf M on G is a triple(

(Mv)v∈V (G), (Me)e∈E(G), (ρv,e)v∈e
)
,
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where Ma is an abelian group, a ∈ V (G)∪E(G), and ρv,e : Mv →Me is a homomor-
phism for every vertex v and incident edge e. Given X ⊂ V (G), the space of sections
Γ(M,X) is the subgroup of

∏
x∈XMx consisting of collections (fx)x∈X ∈

⊕
x∈XMx

such that ρx,e(fx) = ρy,e(fy) ∈ Me for every edge e ∈ E(G) joining two vertices
x, y ∈ X.

A moment graph over a vector space U (which for our purposes we might as well
assume to be real) is a pair (G, λ), where G is an undirected graph together with the
additional data of a labelling function λ : E(G) → U . When there is no ambiguity
we will denote a moment graph over U by G (i.e. without reference to λ or U). Let
R = S∗U be the symmetric algebra over U . The structure sheaf A of G is the sheaf
with Av = R for v ∈ V (G), Ae = R/ (λ(e)) for e ∈ E(G), and ρv,e : Av → Ae
the canonical projection. Note that the structure sheaf only depends on the lines
spanned by the λ(e)’s, not on the actual vectors. Since R is a ring, Γ(A, X) is a ring
under pointwise multiplication for any X ⊂ V (G). In particular,

R := Γ(A, V (G)) =
{

(fx)x∈V (G) ⊂ RV (G) : λ(xy) divides fx − fy for all xy ∈ E(G)
}

is a ring, called the structure algebra of (G, λ). The ring R is an algebra over R via
the diagonal embedding ∆ : R → R. For more background on moment graphs, we
refer to the surveys [Jan10] and [Fie13].

2.2. The Bruhat graph. Let (W,S) be a Coxeter system with Coxeter matrix
(ms,t)s,t∈S, and let T :=

⋃
x∈W xSx−1 be the set of reflections of W . Take a finite

dimensional real vector space V with linearly independent subsets {αs}s∈S ⊂ V ∗ and
{α∨s }s∈S ⊂ V such that

〈αs, α∨t 〉 = −2 cos(π/ms,t) for every s, t ∈ S,

and such that dimV is minimal with respect to this condition. Then W acts on
V by s · v = v − αs(v)α∨s , and V0 = span{α∨s : s ∈ S} ⊂ V is the geometric
representation of W . Similarly, if f ∈ V ∗, then s · f = f − f(α∨s )αs, and span{αs :
s ∈ S} is also isomorphic to V0. We work with V and V ∗, rather than the geometric
representation V0, because in the next section we will need the fact that V is a
reflection-faithful representation in the sense of Soergel [Soe07]. Because V0 is the
standard representation, Φ = W · {αs : s ∈ S} ⊂ V0 is a root system for W , and
Φ can be partitioned into positive and negative roots Φ+ and Φ− respectively. In
addition, there is a bijection between reflections T and positive roots Φ+ sending
t = wsw−1 to αt := wαs.

The Bruhat graph GW of (W,S) is the graph with vertex set W , and an edge
between x, y ∈ W if and only if tx = y for some t ∈ T . Because each edge xy is
labelled by a unique reflection t ∈ T , the Bruhat graph can be regarded as a moment
graph (with infinitely many vertices) over V ∗ via the labelling function λ(xy) = αt,
where tx = y. We use RW to denote the structure algebra of GW . The Bruhat graph
of an interval [e, w] is the subgraph Gw of GW induced by the vertices [e, w]. We let
Rw denote the structure algebra of Gw, where Gw is regarded as a moment graph via
the restriction of λ. In contrast to GW , the graph Gw is always finite. We can now
state the main structure theorem for Rw:
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Theorem 2.1. Given w, x ∈ W , let x = s1 . . . sn be a reduced expression, where
si ∈ S. Define

ξw(x) =


∑

1≤i1<...<i`(w)≤n
s.t. si1 ···si`(w)

=w

βi1 · · · βi`(w)
w ≤ x

0 w 6≤ x

,

where βj = s1 · · · sj−1(αsj), j ≥ 1. Then:

(a) ξw(x) is independent of the choice of reduced expression for x, giving rise to
a well-defined function

ξw : W → R,

(b) if w ≤ x then deg ξw(x) = `(w), so in particular ξw(x) 6= 0, and
(c) the set of functions {ξy, y ≤ w}, when restricted to [e, w], form an R-module

basis for Rw. Thus, Rw is a graded free R-module.

The basis {ξw : w ∈ W} is called the Schubert basis ofRw. An example calculation
of the Schubert basis is given at the end of the section. When W is crystallographic,
Theorem 2.1 is due to Kostant-Kumar [KK86] and Billey [Bil99]. The formula for
ξw(x) in part (a) is often called Billey’s formula [Tym13]. The proof of Theorem
2.1 in [KK86] and [Bil99] can be readily extended to all Coxeter groups. For the
convenience of the reader, we give a streamlined proof of Theorem 2.1, based on
[KK86, Bil99] and an unpublished paper of Stembridge [Ste93]. We start with the
proof of part (a).

Let I = {s, t} ⊂ S be such that m := ms,t < ∞. Then, span{αs, αt} ⊂ V ∗

gives the geometric representation of the subgroup WI ⊂ W generated by {s, t}.
There are exactly two reduced expressions for the longest element w0 ∈ WI , w0 =
st . . . = ts . . ., each having length m. Fix the reduced expression w0 = st . . ., and let
βj ∈ span{αs, αt} be defined as in the statement of Theorem 2.1. Thus, (β1, . . . , βm)
is an ordering of the positive roots in span{αs, αt}. The root sequence for the other
reduced expression is (βm, . . . , β1).

Define N to be the associative R-algebra generated by {as, at}, such that a2
s = a2

t =
0, and with the following braid relation asatas . . . = atasat . . . (m-fold product); N is
the nil Coxeter algebra of WI . For any w = si1 · · · sil ∈ WI , the braid relation ensures
that the element aw = ai1 · · · ail ∈ N is well-defined. Consider the polynomials
h(z) = (1 + z ⊗ as), g(z) = (1 + z ⊗ at) ∈ R[z] ⊗ N . Then, for any w ∈ WI , it
follows that the formula for ξw(w0) given in Theorem 2.1 is the coefficient of aw in
the (m-fold) product h(β1)g(β2)h(β3) · · · ∈ R⊗N .

Lemma 2.2 (Theorem 3, [Ste93]). Let h(z), g(z) ∈ R[z]⊗N , β1, . . . , βm ∈ Φ+ be the
elements from the previous paragraph. Then, h(β1)g(β2) · · · = g(βm)h(βm−1) · · · ∈
R ⊗N . In particular, ξw(w0) is independent of the choice of reduced expression for
w0 ∈ WI .

Lemma 2.3. The functions ξw(x) are independent of the choice of reduced expression
for x.
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Proof. Suppose that x has a reduced factorization x = x1x2x3, where x2 = st · · · is
an s, t braid of length ms,t. Then

ξw(x) =
∑
yi≤xi

s.t. w=y1y2y3,
`(w)=`(y1)+`(y2)+`(y3)

ξyi(xi) (x1 · ξy2(x2)) (x1x2 · ξy3(x3)) .

It is well known that all reduced expressions for x can be obtained from x via braid
moves sts · · · → tst · · · so that the claim will follow by induction, provided it holds
for (W,S) with |S| = 2, and x = st · · · = ts · · · . This follows from Lemma 2.2. �

Now that we know that ξw : W → R is a well-defined function, let Q be the
fraction field of R, and extend the action of W on R to Q. The twisted group ring
QW is the Q-vector space ⊕w∈WQw, with multiplication defined by

qwqw′ = qw(q′) · ww′ ∈ Qww′

Let F denote the Q-vector space of functions f : W → Q. Then there is an action
of QW on F given by

((qw)f) (u) = qw(f(w−1u)),

and this allows us to define the Demazure operator Ds := 1
αs

(1 − s) ∈ QW for any

s ∈ S. These operators satisfy sDs = Ds = −Dss, so in particular D2
s = 0.

Note that the elements ξw belong to F . Given w ∈ W , let DL(w) denote the left
descent set of w.

Proposition 2.4. For any s ∈ S,w ∈ W , we have

Dsξw =

{
ξsw s ∈ DL(w)

0 otherwise
.

Proof. Suppose that s ∈ DL(w) and let v, u ∈ W be such that v = su, `(v) = `(u)+1.
Then,

(Dsξw)(v) =
1

αs
(ξw(v)− sξw(u))

=
1

αs
(αsξsw(v))

= ξsw(v),

while

(Dsξw)(u) =
1

αs
(ξw(u)− sξw(v))

=
1

αs
(−s (αsξsw(v)))

= ξsw(u).

Hence Dsξw = ξsw for any s ∈ DL(w). If s /∈ DL(w), then we have ξw = Dsξsw and
Dsξw = D2

sξsw = 0. �
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Proof of Theorem 2.1. We have already shown part (a) in Lemma 2.3. Part (b)
follows from the definition and the fact that βj is a positive root, and hence is a
non-negative linear combination of αs’s.

For part (c), we first have to show that ξy belongs to Rw for all y ≤ w. By
Proposition 2.4 we see that Ds1 · · ·Dsnξy is R-valued, for any sequence s1, . . . , sn ∈ S.
Moreover, it is clear that

QW = spanQ{Ds1 · · ·Dsn | s1, . . . , sn ∈ S}

and that

N := spanR{Ds1 · · ·Dsn | s1, . . . , sn ∈ S}

contains W ⊂ QW . Thus nξy is R-valued for any n ∈ N .
Let αt ∈ Φ, so that αt = u(αs) for some u ∈ W, s ∈ S. Then

uDsu
−1 = u

(
1

αs
(1− s)

)
u−1 =

1

αt
(1− t),

and uDsu
−1 ∈ N implies 1

αt
(1− t)ξw is R-valued. If v = tu for some t ∈ T then

1

αt
(ξw(v)− tξw(u)) ∈ R,

and this happens if and only if

αt divides (ξw(v)− ξw(u) + ξw(u)− tξw(u)) .

Since αt divides ξw(u)− tξw(u), we conclude that ξw ∈ R as desired.
It remains to show that {ξy}y≤w is an R-basis of Rw. For this, choose a linear

extension y1 ≺ . . . ≺ yr of the interval [e, w]. Define the support of f = (fy)y≤w to be
supp(f) = {y ≤ w | fy 6= 0}. Then {ξy}y≤w is linearly independent over R by support
considerations. Moreover, if f = (fy)y≤w ∈ Rw and supp(f) ⊂ {y ≤ yi} with fyi 6= 0,
then fyi = pαj1 · · ·αjr , for some p ∈ R, where αjk are the labels attached to any edge
e with endpoints yi and xk, with `(xk) < `(yi). Thus, supp(f − pξyi) ⊂ {y < yi} and
f ∈

∑
j Rξyj by induction on i. �

Example 2.5. Let W = S3, S = {a, b} with positive roots {α, β, α + β}, so that a
is the reflection corresponding to the root α, b is the reflection corresponding to the
root β. Set γ = α + β. The moment graph is

b

e

ab

a

aba

ba

β α

β
γα γ

γ

αβ
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We have the following elements of the Schubert basis

ξa =

0

0

α

α

γ

γ ξb =

β

0

γ

0

γ

β

ξab =

0

0

αγ

0

αγ

0 ξba =

0

0

0

0

βγ

βγ

3. Braden-MacPherson sheaves and Hodge theory

3.1. Braden-Macpherson sheaves. Let (G, λ) be a directed moment graph. For
G acyclic we obtain a partial ordering ≤ on V (G): x ≤ y ∈ V (G) if and only if

there is a directed edge x
e→ y ∈ E(G). For any x ∈ V (G) we write {> x} = {y ∈

V (G) | y > x}, and similarly for {≥ x}, {< x}, {≤ x}.
Suppose that G is a finite, acyclic directed graph and V (G) has a unique highest

element w0 with respect to the induced partial order.
The Braden-Macpherson sheaf on G (or BM -sheaf when there is no confusion) is

the sheaf BM(G) on G constructed inductively as follows:

(1) Set BM(G)w0 = R.
(2) Suppose BM(G)y has been constructed already, for some y ∈ V (G). Define

BM(G)e := BM(G)y/λ(e)BM(G)y

for any directed edge e ending at y, and let ρy,e be the canonical quotient
homomorphism.

(3) Suppose BM(G) has been constructed on the full subgraph {> x}. Define

BM(G)δx := im
(
Γ(BM(G), {> x})→ ⊕e∈E(G)δx BM(G)e

)
Here E(G)δx = {e ∈ E(G) | x e→ y for some y ∈ V (G)}, the set of edges
starting at x, and the map is the canonical projection. Define BM(G)x

to be a (graded) projective (i.e. free) cover of BM(G)δx, and ρx,e are the
components of the map BM(G)x → BM(G)δx ⊂ ⊕e∈E(G)δx BM(G)e.

The global sections BM(G) := Γ(BM(G), V (G)) of BM(G) will be called the
Braden-Macpherson module on G, or BM-module when there is no confusion. By
construction, BM(G) is a module over the stucture algebra R of G. In particular,
BM(G) admits an R-module structure coming from the diagonal embedding ∆ :
R→ R. We will call this the standard R-module structure.
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When Gw is the moment graph of the Bruhat interval [e, w] we write BM(w) for the
BM -sheaf. For any x ∈ W , BM(w)x, contains a unique degree 0 summand. Hence,
the corresponding BM -module, BM(w), contains a (unique) free Rw-submodule.
Moreover, BM(w) is (graded) free with respect to the standard R-module structure.

If G is the moment graph of 0 and 1-dimensional orbits of a sufficiently nice
irreducible, complex T -variety X (T an algebraic torus), Braden-Macpherson showed
in [BM01] that BM(G) is isomorphic to the T -equivariant intersection cohomology
IH∗T (X) as a graded H∗(BT )-module. This isomorphism induces H∗T (X) ∼= R.
The non-equivariant intersection cohomology is obtained as IH∗(X) ∼= BM(G)/U ·
BM(G), with H∗(X) ∼= R/U · R and intertwine the action of H∗(X) on IH∗(X)
with the action of R on BM(G).

3.2. Soergel bimodules. Let V be a reflection faithful representation of the Cox-
eter system (W,S), R the ring of regular functions on V . Consider the Z-grading
on R obtained by letting V ∗ sit in degree 2. We work in R-Zmod-R, the category of
R-bimodules that are Z-graded as left R-modules.

In [Soe07], Soergel introduces a category of R-bimodules B ⊂ R-Zmod-R. He
shows that B provides a manifestation of the Hecke category of (W,S): it is an
additive monoidal category with split Grothendieck group isomorphic to the Hecke
algebra H of (W,S). We denote the resulting isomorphism ch : K(B) → H, the
character map.

Soergel constructs certain ‘special’ bimodules B(x) ∈ B, x ∈ W , and conjectures
that the image of their isomorphism classes under the character map should coincide
with the Kazhdan-Lusztig basis. This conjecture was verified by Elias-Williamson
in [EW14].

Conjecture 3.1 (Soergel conjecture). [Soe07][EW14] Let (W,S) be a Coxeter sys-
tem, H the associated Hecke algebra. Then, {ch(B(x)) | x ∈ W} ⊂ H recovers the
Kazhdan-Lustig basis.

3.3. The isomorphism between BM-modules and Soergel bimodules. Fiebig
gave a characterisation of B in the language of RW -modules and sheaves on the
Bruhat graph [Fie08].

Write xf for the standard W action on R and Q (x ∈ W , f ∈ Q). Then, the
structure algebra RW (w ∈ W ) admits a twisted R-module structure: for f ∈ R, we
let σ(f) = (xf)x∈W . Then, σ(f) ∈ RW and we get a well-defined homomorphism
σ : R → RW . In this way, BM(w) becomes an R-bimodule via restriction ∆ ⊗ σ :
R⊗R→ RW .

For a graded R-module M =
⊕

iM
i, we denote M{k} =

⊕
iM{k}i, k ∈ Z, to be

the graded R-module with M{k}i = M i+k.

Proposition 3.2. [Fie08] Let w ∈ W , Then, there is an isomorphism of R-bimodules
BM(w) ∼= B(w){−`(w)}.

Fiebig gives an equivalent reformulation of Soergel’s conjecture (Conjecture 3.1)
in the language of moment graphs.
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Conjecture 3.3 (Soergel conjecture for moment graphs). If BM(w)x ∼=
⊕

iR{ki}
then Kx,w(v2) =

∑
i v
−ki, where Kx,w are the Kazhdan-Lusztig polynomials.

3.4. The work of Elias-Williamson. Elias-Williamson provide a proof of Con-
jecture 3.1 (equivalently Conjecture 3.3), identifying {ch(B(x)) | x ∈ W} with the
Kazhdan-Lusztig basis of H.

An essential part of Elias-Williamson’s work is obtaining an analog of the hard
Lefschetz theorem for Soergel bimodules.

Theorem 3.4. [EW14] Let ρ ∈ V ∗ satisfy 〈ρ, α∨s 〉 > 0, for each s ∈ S. Denote by

ρ the R-linear operator on B(x) := R ⊗R B(x) induced by the right action of ρ on
B(x). Then,

ρi :
(
B(x)

)−i
→
(
B(x)

)i
is an isomorphism for each i ≥ 0.

As a consequence, they obtain an extension to arbitrary Coxeter systems of the
following:

Corollary 3.5 (Kazhdan-Lusztig positivity conjecture). [?] Let (W,S) be a Coxeter
system, Kx,w ∈ Z[v±1] a Kazhdan-Lusztig polynomial. Then, the coefficients of Kx,w

are nonnegative integers.

Example 3.6. Let ρ = α + β. Then,

σ(ρ) =

α

ρ

−α

β

−ρ

−β

Thus, (1⊗ρ)ξa = σ(ρ)ξa = βξa−2ξba− ξab. Similarly, (1⊗ρ)ξb = αξb− ξba−2ξab.

The matrix of ρ in the Schubert basis is

[
−2 −1

−1 −2

]
.

4. Proof of main theorems

4.1. Proof of Theorem 1.1. Let w ∈ W and BM(w) = ⊕iBM(w)i the corre-
sponding BM -module, where BM(w)i is the degree i summand of the (free) left
R-module BM(w). Since Rw is an Rw-submodule of BM(w), Theorem 2.1 provides
a linearly independent subset {ξx}x≤w in BM(w), with respect to the left R-module
structure. Moreover, ξx ∈ BM(w)`(x), for each x ≤ w. Hence,

dimR

(
BM(w)

)i
≥ ai(w), for i ≥ 0.
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Let ρ be as in Theorem 3.4. Then, σ(ρ) ∈ Rw so that the Rw-submodule Rw ⊂
BM(w) is preserved by multiplication by σ(ρ). The result follows from Propositition
3.2 and Theorem 3.4.

4.2. Proof of Theorem 1.2. For a (graded) free R-module M ∼= S{ki} we denote
the graded rank of M by rank M =

∑
i v
−ki ∈ Z[v±1]. For x ≤ w ∈ W , define

IPw := rank BM(w) =
∑

ci(w)v2i.

Observe that Pw =
∑

x≤w v
2`(x) =

∑
i ai(w)v2i, by Theorem 2.1, and IPw(v) =

v2`(w)IPw(v−1), by Theorem 3.4 and Proposition 3.2.
It is a consequence of Soergel’s conjecture (Conjecture 3.3) that rank BM(w)x =

Kx,w(v2), where Kx,w ∈ Z[v±1] is the Kazhdan-Lusztig polynomial. We write

Ke,w(v2) =
∑
i

bi(w)v2i = 1 + b1(w)v2 + . . .+ br(w)v2r.

Corollary 3.5 shows that b1(w), . . . , br(w) ∈ Z≥0.

Proposition 4.1. Let w ∈ W .

(i) IPw(v) =
∑

x≤w v
2`(x)Kx,w(v2),

(ii) ( Monotonicity) If y ≤ x then Ky,w(v)−Kx,w(v) ∈ Z≥0[v],
(iii) The following are equivalent:

(a) bk0(w) 6= 0 and bk(w) = 0, for 0 < k < k0,
(b) for k < k0, ak(w) = ck(w) and ak0(w) < ck0(w),
(c) for k < k0, ak(w) = a`(w)−k(w), and a`(w)−k0(w)− ak0(w) = bk0(w) > 0.

Proof. (i) Let {≤ w} = {x1, . . . , xn} so that xi < xj (in Bruhat order) implies
i < j. Denote Ωj = {xi | i ≥ j} and define Fj := BM(w)Ωj . Observe that
each Ωj is upwardly closed. We obtain a cofiltration (Fi) of BM(w)

BM(w) = F1
f1−→ F2

f2−→ · · · fn−1−→Mn
fn−→ 0

Furthermore, if BM(w)xi ∼=
⊕mi

j=1 S{ki,j} thenKi := ker fi ∼=
⊕mi

j=1 S{2(`(xi)−
`(w))− ki,j} [Fie08]. Therefore,

IPw =
n∑
i=1

rank Ki =
n∑
i=1

mi∑
j=1

vki,j−2(`(xi)−`(w))

and, using IPw(v) = v2`(w)IPw(v−1), we find

IPw(v) =
n∑
i=1

mi∑
j=1

v2`(xi)−ki,j =
∑
x≤w

v2`(x)Kx,w(v2).

(ii) Let x ≤ y ≤ w, with `(x) + 1 = `(y), and denote the edge E : x → y.
The construction of BM(w) implies that there is a surjective R-module ho-
momorphism BM(w)x → BM(w)δx → BM(w)E, where the last map is
projection onto the E summand. Upon tensoring with the trivial (graded)



TEMPORARY TITLE 11

R-module R{0}, the quotient homomorphism BM(w)y → BM(w)E becomes
an isomorphism of graded vector spaces

BM(w)y ⊗R R ∼= BM(w)E ⊗R R ∼=
⊕
j

R{kj}.

The existence of the surjection BM(w)x⊗R R→ BM(w)E ⊗R R gives the
result.

(iii) Let q = v1/2. We will consider Pw(q), IPw(q), Ke,w(q) for ease of notation.
Let f [j] ∈ Z denotes the coefficient of qj in f ∈ Z[q]. Then, (i) implies that

(2) cj(w) =
∑
`(x)≤j

Kx,w[j − `(x)] = aj(w) +
∑
`(x)<j

Kx,w[j − `(x)],

for any 0 ≤ j ≤ `(w).
(a) ⇒ (b) Suppose that bk0(w) 6= 0 and bk(w) = 0, for each 0 < k < k0.

Then, by (ii), the coefficient of qk in Kx,w is zero, for each 0 < k < k0, and
any x ≤ w. Hence,

ck(w) =
∑
x≤w
`(x)=k

q`(x) = ak(w).

Furthermore,

ck0(w) =
∑
x≤w

`(x)=k0

q`(x) + bk0(w) = ak0(w) + bk0(w) > ak0(w)

by assumption and the fact that bi(w) ≥ 0, for each i.
(b)⇒ (c) If ak(w) = ck(w) then Theorem 1.1 gives

α`(w)−k(w) ≥ ak(w) = ck(w) = c`(w)−k(w) ≥ a`(w)−k(w)

so that ak(w) = a`(w)−k(w). Equation (2) and the assumption ak(w) = ck(w)
implies that bk(w) = 0, for each 0 < k < k0. Also, ak0(w) < ck0(w) and
monotonicity gives

0 <
∑

`(x)<k0

Kx,w[k0 − `(x)] = bk0(w).

To obtain the result it suffices to show that a`(w)−k0(w) = c`(w)−k0(w).
Suppose this is not the case, so that∑

`(x)<`(w)−k0

Kx,w[`(w)− k0 − `(x)] > 0.

It is well-known that degKx,w(q) ≤ (`(w) − `(x) − 1)/2 [KL79] so that
those x ≤ w that can contribute to the sum above must satisfy `(w) +
1 − 2k0 ≤ `(x) < `(w) − k0. Thus, there is some x ≤ w satisfying this
constraint such that Kx,w[`(w) − k0 − `(x)] 6= 0. However, any such x must
have `(w)− k0 − `(x) ∈ {1, . . . , k0 − 1}, which contradicts monotonicity and
the fact that bk(w) = 0, for any 0 < k < k0.
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(c)⇒ (a) This argument is similar to the previous argument. Let 0 < k1 <
k0 be a minimal index such that bk1(w) > 0, and suppose ak(w) = a`(w)−k(w),
for 0 < k < k0. Then,

ak1(w) + bk1(w) = ck1(w) = c`(w)−k1(w) = a`(w)−k1(w) + C,

where
C =

∑
x≤w

`(x)<`(w)−k1

Kx,w[`(w)− `(x)− k1] > 0.

As above we can find some x ≤ w with `(w) + 1 − 2k1 ≤ `(x) < `(w) − k1

and such that Kx,w[`(w) − `(x) − k1] 6= 0. However, by monotonicity, this
contradicts the minimality of k1.

�
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