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Abstract
We show that the Virasoro conjecture in Gromov–Witten theory holds for the the total space of a toric bundle
𝐸 → 𝐵 if and only if it holds for the base B. The main steps are: (i) We establish a localization formula that
expresses Gromov–Witten invariants of E, equivariant with respect to the fiberwise torus action in terms of genus-
zero invariants of the toric fiber and all-genus invariants of B, and (ii) we pass to the nonequivariant limit in this
formula, using Brown’s mirror theorem for toric bundles.

To the memory of Bumsig Kim.
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1. Introduction

Virasoro constraints are differential relations between generating functions for Gromov–Witten invari-
ants of a compact Kähler manifold X. In order to formulate these relations, we begin with a refresher on
the structure of Gromov–Witten invariants in genus zero. We assume that the reader is familiar with the
basic assumptions and results in Gromov–Witten theory; introductions to the subject, from a compatible
point of view, can be found in [4, 6, 13, 15].

1.1. Genus-zero Gromov–Witten theory

Let H denote the classical cohomology algebra of X, which we equip with coefficients in the Novikov
ring Ξ of X. Following [13, 15], we encode genus-zero Gromov–Witten invariants of X by an overruled
Lagrangian cone L𝑋 in the symplectic loop space (H,Ω). Here, H := 𝐻 ((𝑧−1)) is the Z2-graded module
over the Novikov ring consisting of Laurent series in 𝑧−1 with vector coefficients. The symplectic form
on H is

Ω( 𝑓 , 𝑔) := Res𝑧=0
(
𝑓 (−𝑧), 𝑔(𝑧)

)
𝑑𝑧,

where (·, ·) is the Poincaré pairing on H with values in Ξ. The subspaces H+ := 𝐻 [𝑧] and H− :=
𝑧−1𝐻 [[𝑧−1]] form a Lagrangian polarization of (H,Ω), thus identifying it with 𝑇∗H+. The Lagrangian
cone L𝑋 is a germ of a Lagrangian section over the point −1𝑧 ∈ H+, where 1 is the unit vector in H.
This section is therefore the graph of differential of a formal function on H+, the genus-zero descendant
potential of X, although with the domain translated by the dilaton shift t ↦→ t − 1𝑧. The statement that
L𝑋 is overruled means that each tangent space T to L𝑋 is a Ξ[𝑧]-module and is in fact tangent to L𝑋
exactly along 𝑧𝑇 .

1.2. Grading

The fact that L𝑋 is an overruled cone with the vertex at the origin of H puts constraints on the genus-
zero descendant potential of X which are exactly equivalent to the dilaton equation, string equation and
topological recursion relations [15]. In particular, the string equation can be formulated as invariance of
L𝑋 under the flow of the linear vector field on H defined by the operator, denoted 𝑙−1, of multiplication
by 𝑧−1.

To introduce the Virasoro constraints, one needs to invoke one more structure in Gromov–Witten
theory: grading. Consider the twisted loop group, that is, the group of operators on H commuting with
z and preserving the symplectic form. An element a of the Lie algebra of the twisted loop group is
an End(𝐻)-valued function of z satisfying 𝑎(−𝑧)∗ = −𝑎(𝑧), where the asterisk ∗ denotes adjoint with
respect to the Poincaré pairing on H. The grading condition in Gromov–Witten theory can be formulated
as invariance of L𝑋 with respect to the flow of the linear vector field defined by an operator, denoted 𝑙0,
of the form:

𝑙0 = 𝑧𝑑/𝑑𝑧 + 1/2 + 𝑎,

where a is a suitable element of the Lie algebra of the twisted loop group. Since 𝑧𝑑/𝑑𝑧 + 1/2 =√
𝑧(𝑑/𝑑𝑧)√𝑧 is antisymmetric with respect to Ω, the operator 𝑙0 is also antisymmetric with respect to Ω.

In the case of Gromov–Witten theory of the Kähler manifold X, 𝑎 = 𝜇 + 𝜌/𝑧, where 𝜇 : 𝐻 → 𝐻 is the
Hodge grading operator (i.e., the operator of grading in cohomology measured from the middle degree
and taking half-integer values), and 𝜌 is the operator of multiplication by 𝑐1 (𝑇𝑋 ) using the classical
cup-product on H.

https://doi.org/10.1017/fmp.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.2


Forum of Mathematics, Pi 3

The grading property of L𝑋 is the consequence of dimensional constraints: Gromov–Witten invari-
ants, being integrals of cohomology classes against the virtual fundamental cycle of a moduli space of
stable maps, vanish unless the degree of the class matches the dimension of the cycle. For such con-
straints to translate into the grading property on H it is necessary that constants, that is, elements of
the ground ring, have degree zero. For example, there is no grading property in equivariant Gromov–
Witten theory because generators of the coefficient ring of equivariant cohomology theory have nonzero
degrees. In nonequivariant Gromov–Witten theory, Novikov variables also have nontrivial degrees,
deg𝑄𝑑 =

∫
𝑑
𝑐1 (𝑇𝑋 ), but nevertheless the grading property holds due to the divisor equation, which

allows one to recast the nontrivial grading of constants into the correction 𝜌/𝑧 to the grading opera-
tor 𝑙0. The following description of Virasoro operators, though in a Fourier-dual form, goes back to E.
Getzler’s paper [10].

1.3. Virasoro constraints in genus zero

We have [𝑙0, 𝑙−1] = −𝑙−1. Consequently, the operators:

𝑙−1 = 𝑧−1, 𝑙0, 𝑙1 := 𝑙0𝑧𝑙0 𝑙2 := 𝑙0𝑧𝑙0𝑧𝑙0, . . . , 𝑙𝑘 := 𝑙0 (𝑧𝑙0)𝑘 , . . .

commute as vector fields 𝑥𝑘+1 𝑑
𝑑𝑥 on the line: [𝑙𝑚, 𝑙𝑛] = (𝑛−𝑚)𝑙𝑚+𝑛. The genus-zero Virasoro constraints,

which were first proved by X. Liu–G. Tian [25], can be stated and proved as follows.

Proposition 1.1 (see [15, Theorem 6]). If the linear vector field on H defined by 𝑙0 is tangent to the
overruled Lagrangian cone L𝑋 ⊂ H, then the linear vector fields defined by the operators 𝑙𝑚, 𝑚 ≥ −1,
are all tangent to L𝑋 .

Proof. Let T be the tangent space to L𝑋 at a point f. Then 𝑙0 𝑓 ∈ 𝑇 (by hypothesis), and so 𝑧𝑙0 𝑓 ∈ 𝑧𝑇 .
Thus, 𝑙0𝑧𝑙0 𝑓 ∈ 𝑇 , which implies that 𝑧𝑙0𝑧𝑙0 𝑓 ∈ 𝑧𝑇 and hence 𝑙0𝑧𝑙0𝑧𝑙0 𝑓 ∈ 𝑇 and so on. �

1.4. Virasoro constraints in higher genus

Genus-g Gromov–Witten invariants of X are encoded by the genus-g descendant potential F𝑔𝑋 , which is
a formal function on H+ (with coefficients in the Novikov ring) defined near the origin. The totality of
Gromov–Witten invariants of X is encoded by the expression:

D𝑋 := exp ���
∞∑
𝑔=0

ℏ𝑔−1F𝑔𝑋
	
� (1)

called the total descendant potential which, after the dilaton shift by−1𝑧, is interpreted as an ‘asymptotic
element’ of the Fock space associated through quantization with the symplectic loop space (H,Ω):
See [13]. The quantization rules by which quadratic Hamiltonians onH act on elements of the Fock space
are as follows. In a Darboux coordinate system {𝑞𝑎, 𝑝𝑏} compatible with the polarization H = H+ ⊕H−,
we have: �𝑞𝑎𝑞𝑏 := 𝑞𝑎𝑞𝑏

ℏ , �𝑞𝑎𝑝𝑏 := 𝑞𝑎 𝜕
𝜕𝑞𝑏

, �𝑝𝑎𝑝𝑏 := ℏ 𝜕
𝜕𝑞𝑎

𝜕
𝜕𝑞𝑏

.

The linear operators 𝑙𝑘 are infinitesimal symplectic transformations and thus correspond to quadratic
Hamiltonians. Their quantizations, �̂�𝑚, satisfy:

[̂𝑙𝑚, 𝑙𝑛] = (𝑛 − 𝑚) �̂�𝑚+𝑛 + 𝑐𝑚,𝑛,

where 𝑐𝑚,𝑛 = −𝑐𝑛,𝑚 forms a 2-cocycle due to the Jacobi identity. On the Lie algebra of vector fields,
any such cocycle is a coboundary, that is, the commutation relations can be restored by adding to the
generators �̂�𝑘 suitable constants. Namely, 𝑐𝑚,𝑛 = (𝑚 − 𝑛)𝑐𝑚+𝑛,0/(𝑚 + 𝑛) when 𝑚 + 𝑛 ≠ 0, and 𝑚 + 𝑛 = 0
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only when (𝑚, 𝑛) = ±(−1, 1). So, the following corrected quantized operators commute as the classical
ones:

𝐿𝑘 := 𝑙𝑘 + 𝑐𝑘 , where 𝑐𝑘 =

{
𝑐𝑘,0
𝑘 if 𝑘 ≠ 0
𝑐1,−1

2 if 𝑘 = 0.

Virasoro constraints, first conjectured by T. Eguchi, K. Hori, M. Jinzenji, C.-S. Xiong and S. Katz in
[8, 9], can be stated as follows.

Conjecture 1.2 (Virasoro conjecture). If a total descendant potential D satisfies the string and grading
constraints, that is, if 𝐿−1D = 0 and 𝐿0D = 0, then it satisfies all higher Virasoro constraints: 𝐿𝑘D = 0
for 𝑘 = 1, 2, . . . .

This formulation can be understood as a statement about total descendant potentials D of abstract,
axiomatically described Gromov–Witten-like theories as introduced by Kontsevich–Manin [20] (see
also [28]). When D is the total descendant potential D𝑋 of a target space X, the string equation
always holds and the grading constraint 𝐿0D𝑋 = 0 holds in nonequivariant Gromov–Witten theory for
dimensional reasons: See, for example, [10, Theorem 2.1], where it is referred to as Hori’s equation. In
this case, the central constants are

𝑐0 =
𝜒(𝑋)

16
+ str(𝜇𝜇∗)

4

and 𝑐𝑘 = 0 for 𝑘 ≠ 0. The fact that D𝑋 is an eigenfunction of �̂�0, the grading operator per se, with
eigenvalue −𝑐0 comes from the anomalous term in the dilaton equation arising from the ‘missing’
genus-one degree-zero moduli space of stable maps to X. The fact that the eigenvalue, which comes
from some Hodge integral over M1,1 × 𝑋 , coincides with the constant 𝑐0 dictated by the commutation
relations, can be considered nontrivial evidence in favor of the Virasoro conjecture.

In [13], Givental described an approach to the Virasoro conjecture for target spaces X with semisim-
ple quantum cohomology and proved the Conjecture for toric Fano manifolds. Subsequently, this ap-
proach was used to prove the conjecture for general toric manifolds [18], complete flag manifolds [19],
Grassmanians [3] and all compact Kähler manifolds with semisimple quantum cohomology
algebras [28]. The Virasoro conjecture holds for Calabi–Yau manifolds for dimensional reasons [10]. It
has also been proved for nonsingular curves [26], using an entirely different set of techniques.

1.5. Loop group covariance

The Lie algebra of the twisted loop group acts by infinitesimal symplectic transformations on (H,Ω),
and the central extension of this Lie algebra acts via quantization on elements of the Fock space.
Exponentiating, one defines the action of the twisted loop group elements: 𝑀 = exp(�ln 𝑀). As a word
of warning, we should add that in practice we will need the action of certain elements of completions
of the loop group (completions into infinite z- or 𝑧−1-series). Not all such operators can be applied
to all elements of the Fock space nor can such operators be composed arbitrarily. In practice, we will
use only particular types of quantized loop group elements applied to specific asymptotic elements of
the Fock space in such an order that, due to certain nice analytic properties of the functions involved,
the application makes sense (sometimes even when the product of infinite matrix series is ill defined in
the loop group itself). With these warnings out of the way, let us assume that two asymptotical elements
of the Fock space, D′ and D′′, are related by such a loop group transformation: D′′ = 𝑀D′. We claim
that Virasoro constraints behave covariantly with respect to loop group transformations.

Proposition 1.3 (Loop group covariance). Suppose that D′ and D′′ = 𝑀D′ both satisfy the grading
constraints 𝐿 ′

0D′ = 0, 𝐿 ′′
0 D′′ = 0 for suitable grading operators 𝑙 ′0 and 𝑙 ′′0 on H. Suppose that M

respects the grading in the sense that 𝑙 ′′0 = 𝑀𝑙 ′0𝑀
−1. Then D′ satisfies Virasoro constraints if and only

if D′′ satisfies Virasoro constraints.
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Proof. It suffices to show that 𝐿 ′′
𝑘 = 𝑀𝐿 ′

𝑘𝑀
−1 for all k. We have that

𝑙 ′′𝑘 = 𝑀𝑙 ′𝑘𝑀
−1 (2)

since 𝑙 ′𝑘 = 𝑙 ′0 (𝑧𝑙
′
0)
𝑘 , 𝑙 ′′𝑘 = 𝑙 ′′0 (𝑧𝑙

′′
0 )
𝑘 , and M commutes with z. After quantization the left- and right-hand

sides of Equation (2) can differ only by central constants 𝑐𝑘 . Yet 𝑐0 = 0, for otherwise D′′, which is
annihilated by both 𝐿 ′′

0 and 𝑀𝐿 ′
0𝑀

−1, would be annihilated by 𝑐0 ≠ 0, implying that D′′ = D′ = 0.
Notice that for 𝑘 ≠ 0, the commutation relation in the Virasoro Lie algebra [𝐿0, 𝐿𝑘 ] = 𝑘𝐿𝑘 is restored
by adding a constant to 𝐿𝑘 . Since 𝐿 ′′

𝑘 satisfies the same commutation relations as 𝑀𝐿 ′
𝑘𝑀

−1, it follows
that 𝑐𝑘 = 0 for all k. �

This covariant behavior of Virasoro constraints was the basis for the proof of the Virasoro Conjecture
for target spaces with generically semisimple quantum cohomology algebras. Namely, Teleman has
proven that the twisted loop group acts transitively on abstract semisimple theories obeying the string
equation [28]. More precisely, the ‘upper-triangular’ part of the group, consisting of power series
in z, acts on all Gromov–Witten-like theories in the Kontsevich–Manin sense and in particular acts on
the corresponding ancestor potentials, whilst the ‘lower-triangular’ part, consisting of power series in
𝑧−1, transforms ancestor into descendant potentials. The combined action transforms (as conjectured
in [13]) the descendant potential D𝑋 of a semisimple target X into the descendant potential D⊗ dim𝐻

point of
a zero-dimensional target. The fact that the descendant potential of the point target satisfies Virasoro
constraints is equivalent to the celebrated Witten–Kontsevich theorem [29, 22] relating intersection
theory on Deligne–Mumford spaces to the Korteweg-de Vries (KdV) hierarchy.

1.6. Toric bundles

It is well known that a compact projective toric manifold X can be obtained by symplectic reduction
from a linear space, 𝑋 = C𝑁 //𝐾 , by a subtorus 𝐾 := (𝑆1)𝑘 of the maximal torus 𝑇 := (𝑆1)𝑁 of diagonal
unitary matrices: See, for example, [1, 12]. We assume without loss of generality that 𝑘 = rk 𝐻2(𝑋).
Let B be a compact Kähler manifold, and let 𝐿1 ⊕ · · · ⊕ 𝐿𝑁 → 𝐵 be a rank N complex vector bundle
decomposed as a direct sum of line bundles. The maximal torus T acts fiberwise on this bundle, and one
can perform symplectic reduction by the subtorus K fiberwise, thus obtaining a toric bundle 𝐸 → 𝐵
with fiber X. The group T is abelian, so E still carries a canonical (fiberwise) left action of 𝑇 := (C×)𝑁 .
Let us denote by 𝐸𝑇 the fixed point locus of this action. It consists of 𝑛 := rk 𝐻∗(𝑋) copies of B, which
are sections of the bundle 𝐸 → 𝐵. The main result of this paper is:

Theorem 1.4. There exists a grading-respecting loop group operator which relates the total descendant
potential of a toric bundle space E to that of the fixed point manifold 𝐸𝑇 : D𝐸 = 𝑀D⊗𝑛

𝐵 .

The discussion in the preceding two sections then yields:

Corollary 1.5. The Virasoro conjecture holds for the total space E if and only if it holds for the base B.

Corollary 1.6. The Virasoro conjecture holds for the total space of a toric bundle over a base B in any
of the following cases:

1. the quantum cohomology algebra of B is generically semisimple.
2. B is a compact Riemann surface.
3. B is a 𝐾3 surface.
4. B is a Calabi–Yau manifold of dimension at least 3.

Note that in case (2) the quantum cohomology of B is semisimple only if 𝐵 = P1. In cases (3) and (4),
the quantum cohomology of B is never semisimple.
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2. The proof of Theorem 1.4

Our proof of Theorem 1.4 consists of two steps: (i) relating T-equivariant counterparts of the descendant
potential of E and 𝐸𝑇 by a loop group transformation M; and (ii) establishing the existence of a
nonequivariant limit of M. The first step relies on fixed point localization in T-equivariant Gromov–
Witten theory; for the second step, we use Brown’s relative mirror theorem for toric bundles [4].

2.1. Descendant-ancestor correspondence

To elucidate step (i), we first recall the descendant/ancestor correspondence [6, Appendix 2]:

D = 𝑒𝐹 (𝜏) �𝑆(𝜏)−1 A(𝜏).

Here, D is the total descendant, and A the total ancestor potential of E. The latter is defined [6, 13]
by replacing the 𝜓-classes in the definition of Gromov–Witten invariants with their counterparts pulled
back from Deligne–Mumford spaces by the contraction maps ct : M𝑔,𝑛+𝑚(𝐸, 𝑑) → M𝑔,𝑛 and also
inserting a primary class 𝜏 ∈ 𝐻 at each of the m free marked points (which results in the dependence
of A on the parameter 𝜏). The function F in the exponent is the potential for primary (no descendants)
genus-1 Gromov–Witten invariants. The operator S is lower-triangular (i.e., represented by a series in
𝑧−1) and is uniquely determined by the overruled Lagrangian cone L𝐸 , as follows. Each tangent space
to L𝐸 is tangent to L𝐸 at a point of the form −1𝑧 + 𝜏 + O(1/𝑧), and thus the tangent spaces depend on
a parameter 𝜏. For a tangent space 𝑇𝜏 , the Ξ[𝑧]-linear projection H+ → 𝑇𝜏 along H− determines (and
is determined by) the lower-triangular loop group element 𝑆(𝜏)−1 : 𝐻 ⊂ H+ → 𝑇𝜏 ⊂ H.

The operator S can be expressed in terms of Gromov–Witten invariants and thus it is subject to
dimensional constraints. This guarantees that conjugation by S respects the grading operators, that
is, transforms the grading operator 𝑙0 for Gromov–Witten theory into the grading operator for the
ancestor theory. Thus, it remains to find another grading-preserving loop group transformation relating
𝑒𝐹 (𝜏)A(𝜏) with D𝐸𝑇 .

2.2. Fixed-point localization

In the torus-equivariant version of Gromov–Witten theory, there exists an ‘upper-triangular’ element
𝑅(𝜏) of the loop group which provides the following relationship between suitable ancestor potentials
of the target space E and its fixed point locus 𝐸𝑇 :

A𝑒𝑞 (𝜏) = �𝑅(𝜏) ∏
𝛼∈𝐹

A𝛼,𝑡𝑤𝐵 (𝑢𝛼 (𝜏)). (3)

Here, A𝑒𝑞 refers to the total ancestor potential of E in T-equivariant Gromov–Witten theory (of which
we are reminded by the superscript 𝑒𝑞), and A𝛼,𝑡𝑤𝐵 is a similar ancestor potential of one component
𝐸 𝛼 = 𝐵 of the fixed point locus 𝐸𝑇 . The superscript 𝑡𝑤 indicates that we are dealing here not with the
Gromov–Witten theory of 𝐸 𝛼 = 𝐵 per se, but with the Gromov–Witten theory of the normal bundle of
𝐸 𝛼 in E; this is the local theory1 of 𝐸 𝛼, or in other words the twisted theory of B. The product over
the fixed point set 𝐹 = 𝑋𝑇 means that each function depends on its own group of variables according
to the decomposition 𝐻𝑇 := 𝐻∗

𝑇 (𝐸 ;Ξ) = ⊕𝛼∈𝐹𝐻∗
𝑇 (𝐸

𝛼;Ξ) of equivariant cohomology induced by
the embedding 𝐸𝑇 ⊂ 𝐸 and localization. Let us write 𝜏 = ⊕𝛼𝜏𝛼 using the same decomposition. The
quantities 𝑢𝛼 (𝜏) in Equation (3) are certain block-canonical coordinates on 𝐻𝑇 , defined in §3.4 below,
which have the property that 𝑢𝛼 (𝜏) ≡ 𝜏𝛼 modulo Novikov variables. The operator 𝑅(𝜏) here is a power
series in z, and it does not have a nonequivariant limit. The existence of the operator 𝑅(𝜏) and the
validity of formula (3) are established in §3 below.

1This is necessarily an equivariant theory, as the target space is noncompact.
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Next, the ancestor potential of the normal bundle of 𝐸 𝛼 in E is related to the corresponding descendant
potential by the equivariant version of the descendant/ancestor correspondence:

A𝛼,𝑡𝑤𝐵 (𝑢𝛼 (𝜏)) = 𝑒−𝐹
𝛼,𝑡𝑤
𝐵 (𝑢𝛼 (𝜏)) �𝑆𝛼,𝑡𝑤𝐵 (𝑢𝛼 (𝜏))D𝛼,𝑡𝑤𝐵 for each 𝛼 ∈ 𝐹.

Finally, according to the Quantum Riemann–Roch theorem2 [6]:

D𝛼,𝑡𝑤𝐵 = Γ̂−1
𝛼 D𝑒𝑞𝐵 . (4)

That is, the twisted equivariant descendant potential is obtained from the untwisted equivariant descen-
dant potential of the fixed point manifold (i.e., |𝐹 | copies of the base B of the toric bundle in our case)
by quantized loop group transformations. The operators involved have the form

Γ−1
𝛼 = exp

(∑
𝑚≥0

𝜌𝛼𝑚𝑧
2𝑚−1

)
,

where 𝜌𝛼𝑚 are certain operators of multiplication in the classical equivariant cohomology of 𝐸 𝛼; see [6]
for the precise definition.

Composing the above transformations, we obtain

𝑒𝐹
𝑒𝑞 (𝜏)A𝑒𝑞 (𝜏) = �𝑀 (𝜏)

∏
𝛼∈𝐹

D𝑒𝑞𝐵 where �𝑀 (𝜏) = 𝑒𝐹
𝑒𝑞 (𝜏)−

∑
𝛼 𝐹

𝛼,𝑡𝑤
𝐵 (𝑢𝛼 (𝜏))𝑅(𝜏)

(⊕
𝛼∈𝐹

�𝑆𝛼,𝑡𝑤𝐵

(
𝑢𝛼 (𝜏)

)
Γ̂−1
𝛼

)
.

Both 𝑒𝐹
𝑒𝑞 (𝜏)A𝑒𝑞 (𝜏) and

∏
𝛼∈𝐹 D𝑒𝑞𝐵 have nonequivariant limits, but some ingredients of the operator

𝑀 (𝜏) do not. Nonetheless, we prove:

Claim. The operator 𝑀 (𝜏) has a well-defined nonequivariant limit, which is grading preserving.

This implies Theorem 1.4.

2.3. Why does the limit exist?

To understand why the nonequivariant limit of 𝑀 (𝜏) exists, consider the equivariant descendant/ancestor
relation

𝑒𝐹
𝑒𝑞 (𝜏)A𝑒𝑞 (𝜏) = �̂�𝑒𝑞 (𝜏)D𝑒𝑞 .

The descendant potential here does not depend on the parameter 𝜏 ∈ 𝐻𝑇 . The upper-triangular loop
group element 𝑆𝑒𝑞 (𝜏) is a fundamental solution to the (equivariant) quantum differential equations3

for E:

𝑧𝜕𝑣𝑆(𝜏) = 𝑣 •𝜏 𝑆(𝜏) 𝑣 ∈ 𝐻𝑇 ,

where •𝜏 is the equivariant big quantum product with parameter 𝜏 ∈ 𝐻𝑇 . Therefore, the function
𝑒𝐹

𝑒𝑞A𝑒𝑞 depends on 𝜏 in the same way, that is, satisfies:

𝜕𝑣

(
𝑒𝐹

𝑒𝑞 (𝜏)A𝑒𝑞 (𝜏)
)
=
�( 𝑣•𝜏

𝑧

) (
𝑒𝐹

𝑒𝑞 (𝜏)A𝑒𝑞 (𝜏)
)

𝑣 ∈ 𝐻𝑇 .

2To simplify discussion, we omit a constant factor in the quantum Riemann-Roch formula.
3This is the equivariant version of the Dubrovin connection.
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On the other hand, 𝑒𝐹𝑒𝑞A𝑒𝑞 = �𝑀 (𝜏)
∏
𝛼∈𝐹 D𝑒𝑞𝐵 and

∏
𝛼∈𝐹 D𝑒𝑞𝐵 does not depend on 𝜏. Therefore, the

dependence of M on 𝜏 is governed by the same connection:

𝑧𝜕𝑣𝑀 (𝜏) = 𝑣 •𝜏 𝑀 (𝜏) 𝑣 ∈ 𝐻𝑇 .

The main result of the paper [4] about toric bundles provides, informally speaking, a fundamental
solution to this connection for the total space E of a toric bundle assuming that the fundamental solution
for the base B is known. The solution is given in the form of an oscillating integral – the ‘equivariant
mirror’ to the toric fiber X. The proof of the above claim is based on the identification of M with
another form of this solution, obtained by replacing the oscillating integrals with their stationary phase
asymptotics. In the nonequivariant limit of the oscillating integrals, the stationary phase asymptotics
tend to a well-defined limit because the critical points of the phase function remain well defined and
nondegenerate in the limit – this is equivalent to the semisimplicity of the nonequivariant quantum
cohomology algebra of the toric fiber [18]. We explain this in detail in §4 below. In the next section, we
discuss localization in T-equivariant Gromov–Witten theory of toric bundles.

3. Fixed-point localization

3.1. The T-action on E

Let 𝜋 : 𝐸 → 𝐵 be a toric bundle with fiber X, constructed as in §1.6. Let 𝔨 and 𝔱 denote the Lie algebras
of 𝐾 = (𝑆1)𝑘 and 𝑇 = (𝑆1)𝑁 , respectively. Our assumption that rk 𝐻2(𝑋) = 𝑘 implies4 that there is a
canonical isomorphism 𝔨∨ � 𝐻2 (𝑋;R), and so the symplectic form on the toric fiber X determines a
point 𝜔 ∈ 𝔨∨. The embedding 𝐾 → 𝑇 determines and is determined by a linear map 𝔨 → 𝔱; this map
is given by a 𝑘 × 𝑁 matrix with integer entries (𝑚𝑖 𝑗 )1≤𝑖≤𝑘,1≤ 𝑗≤𝑁 . The columns of (𝑚𝑖 𝑗 ) determine
elements 𝐷1, . . . , 𝐷𝑁 ∈ 𝐻2(𝑋;R), the toric divisors on X.

As discussed above, the total space E of the toric bundle carries a fiberwise left action of the big
torus T. The T-fixed set 𝐸𝑇 consists of 𝑛 = rk 𝐻∗(𝑋) copies of B, which are the images of sections
of 𝜋. The T-fixed points on X, and also the T-fixed strata on E, are indexed by subsets 𝛼 ⊂ {1, 2, . . . , 𝑁}
of size k such that 𝜔 lies in the cone spanned by {𝐷𝑖 : 𝑖 ∈ 𝛼}. Denote the set of all such subsets 𝛼
by F. Given such a subset 𝛼 ∈ 𝐹, we write 𝑥𝛼 for the corresponding T-fixed point in X and 𝐸 𝛼 for
the corresponding T-fixed stratum in E. One-dimensional T-orbits on E are nonisolated (unless B is a
point), and components of this space are indexed by one-dimensional T-orbits on X. A one-dimensional
T-orbit in X that connects 𝑥𝛼 to 𝑥𝛽 corresponds to the component of the space of one-dimensional orbits
in E consisting of orbits that connect 𝐸 𝛼 to 𝐸𝛽; this component is again a copy of the base B. We write
𝛽 → 𝛼 if there is a one-dimensional T-orbit in X from 𝑥𝛼 to 𝑥𝛽 . For each 𝛽 ∈ 𝐹 such that 𝛽 → 𝛼 there
is a line bundle over 𝐸 𝛼 � 𝐵 formed by tangent lines (at 𝐸 𝛼) to closures of the one-dimensional orbits
connecting 𝐸 𝛼 to 𝐸𝛽; we denote the first Chern class of this line bundle by 𝜒𝛼𝛽 .

3.2. The T-action on the moduli space of stable maps

In this section and the next, we describe the technique of fixed point localization on moduli spaces of
stable maps. This material, which is well known, is included for completeness, but we will need very
little of it in what follows. In what comes afterwards, torus-invariant stable maps will be chopped into
‘macroscopic’ pieces. What one needs to digest from the ‘microscopic’ description given here is that
the moduli spaces of torus-invariant stable maps factor according to the pieces, that integrals over the
factors are naturally assembled into appropriate Gromov–Witten invariants, and that the only integrands
which do not behave multiplicatively with respect to the pieces are the ‘smoothing factors’ defined
below. The impatient reader should therefore skip straight to §3.4, pausing only to examine the explicit
forms of the smoothing factors, which are given just after Equation (6).

4See [1] or [12] for details.
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Let 𝐸𝑔,𝑛,𝑑 denote the moduli space of degree-d stable maps to E from curves of genus g with n
marked points; here, g and n are nonnegative integers and 𝑑 ∈ 𝐻2(𝐸 ;Z). The action of T on E induces
an action of T on 𝐸𝑔,𝑛,𝑑 . A stable map 𝑓 : 𝐶 → 𝐸𝑔,𝑛,𝑑 representing a T-fixed point in 𝐸𝑔,𝑛,𝑑 necessarily
has 𝑇C-invariant image, which lies therefore in the union of zero- and one-dimensional 𝑇C-orbits in E.
More precisely, some rational irreducible components of C are mapped onto one-dimensional 𝑇C-orbit
closures as multiple covers 𝑧 ↦→ 𝑧𝑘 (in obvious coordinates). We call them legs of multiplicity k. After
removing the legs, the domain curve C falls into connected components 𝐶𝑣 , and the restrictions 𝑓 |𝐶𝑣

are stable5 maps to 𝐸𝑇 which we call stable pieces. Note that each leg maps 𝑧 = 0 and 𝑧 = ∞ to the
T-fixed locus 𝐸𝑇 ⊂ 𝐸 , and each of 𝑧 = 0 and 𝑧 = ∞ is one of:
1. a node, connecting to a stable piece;
2. a node, connecting to another leg;
3. a marked point;
4. an unmarked smooth point.
We associate to possibilities (1)–(4) vertices of Γ, of types 1–4, respectively, thereby ensuring that
each leg connects precisely two vertices. The combinatorial structure of a T-fixed stable map can be
represented by a decorated graph Γ, with vertices as above and an edge for each leg. The edge e of
Γ is decorated by the multiplicity 𝑘𝑒 of the corresponding leg. The vertex v of Γ is decorated with
(𝛼𝑣 , 𝑔𝑣 , 𝑛𝑣 , 𝑑𝑣 ), where 𝛼𝑣 ∈ 𝐹 is the component of the T-fixed set determined by v, and (𝑔𝑣 , 𝑛𝑣 , 𝑑𝑣 )
record the genus, number of marked points and degree of the stable map 𝑓 |𝐶𝑣 for vertices of type 1, and:

(𝑔𝑣 , 𝑛𝑣 , 𝑑𝑣 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 2, 0) for type 2
(0, 1, 0) for type 3
(0, 0, 0) for type 4.

As a T-fixed stable map varies continuously, the combinatorial type Γ does not change. Each connected
component6 is isomorphic to a substack of:( ∏

vertices 𝑣 of Γ
𝐵𝑔𝑣 ,𝑛𝑣 ,𝑑𝑣

) / ���Aut(Γ) ×
∏

edges 𝑒 of Γ
Z/𝑘𝑒Z

	
� . (5)

Here, 𝐵𝑔𝑣 ,𝑛𝑣 ,𝑑𝑣 is the moduli space of stable maps to B, and the ‘missing’ moduli spaces 𝐵0,2,0, 𝐵0,1,0
and 𝐵0,0,0 are taken to be copies of B. The substack is defined by insisting that, for each edge e between
vertices v, w of Γ, the evaluation maps

ev𝑒 : 𝐵𝑔𝑣 ,𝑛𝑣 ,𝑑𝑣 → 𝐵 and ev𝑒 : 𝐵𝑔𝑤 ,𝑛𝑤 ,𝑑𝑤 → 𝐵

determined by the edge e have the same image. These constraints reflect the fact that the one-dimensional
orbit in E determined by the edge e runs along a fiber of the toric bundle 𝐸 → 𝐵.

3.3. Virtual localization

We will compute Gromov–Witten invariants of E by virtual localization. The localization theorem in
equivariant cohomology states that, given a holomorphic action of a complex torus 𝑇C on a compact
complex manifold M and 𝜔 ∈ 𝐻•

𝑇 (𝑀), we have∫
[𝑀 ]

𝜔 =
∫
[𝑀𝑇 ]

𝑖∗𝜔

Euler(𝑁𝑀𝑇 )
,

5Marked points on 𝐶𝑣 here are marked points from C and the attaching points of legs.
6There are many such components corresponding to each decorated graph Γ, which differ by the numbering of the marked

points assigned to each vertex.
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where 𝑖 : 𝑀𝑇 → 𝑀 is the inclusion of the T-fixed submanifold, 𝑁𝑀𝑇 is the normal bundle to 𝑀𝑇 in M,
Euler denotes the T-equivariant Euler class, and the integrals denote the evaluation of a T-equivariant
cohomology class against the T-equivariant fundamental cycle. According to Graber–Pandharipande
[17], the same formula holds when M is the moduli space of stable maps to a smooth projective
T-variety; [𝑀] and [𝑀𝑇 ] denote T-equivariant virtual fundamental classes [24, 2]; and 𝑁𝑀𝑇 denotes
the virtual normal bundle to 𝑀𝑇 , that is, the moving part of the virtual tangent bundle to M restricted to
𝑀𝑇 . To apply this virtual localization formula, we need to describe [𝑀𝑇 ] and Euler(𝑁𝑀𝑇 ). The T-fixed
components (5) come equipped with virtual fundamental classes from the Gromov–Witten theory of B,
and these give the virtual fundamental class [𝑀𝑇 ]. We next describe Euler(𝑁𝑀𝑇 ).

Consider a connected component (5) consisting of stable maps with combinatorial type Γ. The
analysis of the virtual tangent bundle to the moduli space of stable maps in [17, 23] shows that
Euler(𝑁𝑀𝑇 ) takes the form:

Euler(𝑁𝑀𝑇 ) = 𝐶smoothing 𝐶vertices 𝐶edges. (6)

Here, the factor𝐶smoothing records the contribution from deformations which smooth nodes in the T-fixed
stable maps of type Γ. To each type-1 flag, that is, each pair (𝑣, 𝑒), where v is a type-1 vertex and e is
an edge of Γ incident to v, there corresponds a one-dimensional smoothing mode which contributes

ev∗𝑒 𝜒𝛼,𝛽
𝑘𝑒

− 𝜓𝑒

to 𝐶smoothing. Here, 𝜓𝑒 is the cotangent line class (on 𝐵𝑔𝑣 ,𝑛𝑣 ,𝑑𝑣 ) at the marked point determined by e.
To each type-2 flag, there corresponds a one-dimensional smoothing mode which contributes

𝜒𝛼,𝛽1

𝑘1
+
𝜒𝛼,𝛽2

𝑘2

to 𝐶smoothing, where the legs incident to the type-2 vertex connect 𝐸 𝛼 to 𝐸𝛽1 and 𝐸𝛽2 , with multiplicities
𝑘1 and 𝑘2, respectively. Flags of types 3 and 4 do not contribute to 𝐶smoothing.

The factor 𝐶vertices in Equation (6) is a product over the vertices of Γ. A type-1 vertex contributes
the T-equivariant Euler class of the virtual vector bundle 𝑁𝛼𝑣𝑔𝑣 ,𝑛𝑣 ,𝑑𝑣 over 𝐵𝑔𝑣 ,𝑛𝑣 ,𝑑𝑣 with fiber at a stable
map 𝑓 : 𝐶 → 𝐵 given by:7

𝐻0(𝐶, 𝑓 ∗𝑁𝛼𝑣 ) � 𝐻1 (𝐶, 𝑓 ∗𝑁𝛼𝑣 ).

Here, 𝑁𝛼𝑣 → 𝐵 is the normal bundle to 𝐸 𝛼𝑣 � 𝐵 in E. Vertices of type 2, 3, and 4 contribute,
respectively:

Euler𝑇 (𝑁𝛼𝑣 ), Euler𝑇 (𝑁𝛼𝑣 ), and
Euler𝑇 (𝑁𝛼𝑣 )
𝜒𝛼𝑣 ,𝛽/𝑘𝑒

,

where the leg terminating at a type-4 vertex has multiplicity 𝑘𝑒 and connects 𝐸 𝛼𝑣 to 𝐸𝛽 .
The factor 𝐶edges in Equation (6) contains all other contributions from the moving part of the

virtual tangent bundle. We will not need the explicit formula in what follows, but include it here for
completeness. The factor 𝐶edges is a product over edges of Γ. An edge of multiplicity k connecting fixed
points indexed by 𝛼, 𝛽 ∈ 𝐹 contributes

𝑁∏
𝑗=1

∏0
𝑚=−∞

(
𝑈 𝑗 (𝛼) + 𝑚

𝜒𝛼,𝛽
𝑘

)∏𝐷 𝑗 ·𝑑−1
𝑚=−∞

(
𝑈 𝑗 (𝛼) + 𝑚

𝜒𝛼,𝛽
𝑘

)
,

7It is shown in Appendix 1 in [6] that 𝑁 𝛼𝑣
𝑔𝑣 ,𝑛𝑣 ,𝑑𝑣

is a well-defined element of 𝐾 0
𝑇 (𝐵𝑔𝑣 ,𝑛𝑣 ,𝑑𝑣 ) .
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where 𝑈 𝑗 (𝛼) ∈ 𝐻2
𝑇 (𝐸) is the T-equivariant class of the jth toric divisor, restricted to the fixed locus 𝐸 𝛼

and 𝐷 𝑗 · 𝑑 is the intersection index of that divisor with the degree of the corresponding multiply-covered
one-dimensional T-orbit. See [12] and [4] for details.

3.4. Virtual localization in genus zero

Consider the following generating functions for genus-zero Gromov–Witten invariants:

• the J-function 𝐽 (𝜏, 𝑧) ∈ 𝐻•
𝑇 (𝐸) defined by 𝐽 (𝜏, 𝑧) =

∑
𝜇 𝐽 (𝜏, 𝑧)𝜇𝜙𝜇, where

𝐽 (𝜏, 𝑧)𝜇 = (1, 𝜙𝜇)𝑧 + 𝜏𝜇 +
∑

𝑑∈𝐻2 (𝐸)

∞∑
𝑛=0

𝑄𝑑

𝑛!

〈
𝜏, 𝜏, . . . , 𝜏,

𝜙𝜇

𝑧 − 𝜓𝑛+1

〉𝐸
0,𝑛+1,𝑑

(7)

• the fundamental solution 𝑆(𝜏, 𝑧) : 𝐻•
𝑇 (𝐸) → 𝐻•

𝑇 (𝐸) defined by

𝑆(𝜏, 𝑧)𝜇𝜈 = (𝜙𝜇, 𝜙𝜈) +
∑

𝑑∈𝐻2 (𝐸)

∞∑
𝑛=0

𝑄𝑑

𝑛!

〈
𝜙𝜇, 𝜏, . . . , 𝜏,

𝜙𝜈
𝑧 − 𝜓𝑛+2

〉𝐸
0,𝑛+2,𝑑

(8)

• the bilinear form 𝑉 (𝜏, 𝑤, 𝑧) on 𝐻•
𝑇 (𝐸) defined by

𝑉 (𝜏, 𝑤, 𝑧)𝜇𝜈 =
(𝜙𝜇, 𝜙𝜈)
𝑤 + 𝑧

+
∑

𝑑∈𝐻2 (𝐸)

∞∑
𝑛=0

𝑄𝑑

𝑛!

〈
𝜙𝜇

𝑤 − 𝜓1
, 𝜏, . . . , 𝜏,

𝜙𝜈
𝑧 − 𝜓𝑛+2

〉𝐸
0,𝑛+2,𝑑

. (9)

Here, 𝜙1, . . . , 𝜙rk𝐻 •
𝑇 (𝐸) and 𝜙1, . . . , 𝜙rk𝐻 •

𝑇 (𝐸) are bases for 𝐻•
𝑇 (𝐸) that are dual with respect to the

T-equivariant Poincaré pairing on E, endomorphisms M of 𝐻•
𝑇 (𝐸) have matrix coefficients such that

𝑀 (𝜙𝜈) =
∑
𝜇 𝑀

𝜇
𝜈𝜙𝜇, and bilinear forms V on 𝐻•

𝑇 (𝐸) have matrix coefficients such that 𝑉 (𝜙𝜇, 𝜙𝜈) =
𝑉𝜇𝜈 .

The fundamental solution 𝑆(𝜏, 𝑧) satisfies the T-equivariant quantum differential equations:

𝑧𝜕𝑣𝑆(𝜏, 𝑧) = 𝑣 •𝜏 𝑆(𝜏, 𝑧) 𝑣 ∈ 𝐻•
𝑇 (𝐸) (10)

together with the normalization condition 𝑆(𝜏, 𝑧) = Id+O(𝑧−1). Standard results in Gromov–Witten
theory imply that

𝐽 (𝜏, 𝑧) = 𝑧𝑆(𝜏, 𝑧)∗1 and 𝑉 (𝜏, 𝑤, 𝑧) = 𝑆(𝜏, 𝑤)∗𝑆(𝜏, 𝑧)
𝑤 + 𝑧

, (11)

where 𝑆(𝜏, 𝑧)∗ denotes the adjoint of 𝑆(𝜏, 𝑧) with respect to the equivariant Poincaré pairing on 𝐻•
𝑇 (𝐸),

and we identify 𝐻•
𝑇 (𝐸) with its dual space via the equivariant Poincaré pairing (thus equating the

bilinear form V with an operator). The analogous statements hold in the Gromov–Witten theory of B
twisted by the normal bundle 𝑁𝛼 to the T-fixed locus 𝐸 𝛼 � 𝐵.

We begin by processing 𝑆(𝜏, 𝑧) by fixed-point localization. Henceforth, we work over the field of
fractions of the coefficient ring 𝐻•

𝑇 (𝑝𝑡) = 𝐻•(𝐵𝑇) of T-equivariant cohomology theory and insist that
our basis 𝜙1, . . . , 𝜙rk𝐻 •

𝑇 (𝐸) for 𝐻•
𝑇 (𝐸) is compatible with the fixed-point localization isomorphism

𝐻•
𝑇 (𝐸) −→

⊕
𝛼∈𝐹

𝐻•
𝑇 (𝐸

𝛼)

in the sense that each 𝜙𝑖 restricts to zero on all except one of the T-fixed loci, which we denote by
𝐸 𝛼𝑖 ⊂ 𝐸 .

https://doi.org/10.1017/fmp.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.2


12 Tom Coates et al.

Proposition 3.1. The fundamental solution 𝑆(𝜏, 𝑧) can be factorized as the product

𝑆(𝜏, 𝑧) = 𝑅(𝜏, 𝑧) 𝑆block(𝜏, 𝑧), (12)

where R has no pole at 𝑧 = 0, and 𝑆block(𝜏, 𝑧) is the block-diagonal transformation

𝑆block(𝜏, 𝑧) =
⊕
𝛼∈𝐹

𝑆𝛼,tw
(
𝑢𝛼 (𝜏), 𝑧

)
.

Here, 𝑆𝛼,𝑡𝑤 (𝑢, 𝑧) is the fundamental solution in the Gromov–Witten theory of B twisted by the normal
bundle 𝑁𝛼 to the T-fixed locus 𝐸 𝛼 � 𝐵, and 𝜏 ↦→ ⊕𝛼𝑢𝛼 (𝜏) is a certain nonlinear change of coordinates
with 𝑢𝛼 (𝜏) ∈ 𝐻•(𝐸 𝛼) ⊂ 𝐻•(𝐸).

Remark 3.2. Comparing the definition of 𝑢𝛼 (𝜏) given in the proof below with [14, 13], one sees that
the 𝑢𝛼 (𝜏) can be regarded as ‘block-canonical coordinates’ of 𝜏.

Remark 3.3. Since both multiplication by 𝑆(𝜏, 𝑧) and multiplication by 𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏, 𝑧) define linear
symplectomorphisms H → H so does multiplication by 𝑅(𝜏, 𝑧). That is, 𝑅(𝜏,−𝑧)∗𝑅(𝜏, 𝑧) = Id.

Proof of Proposition 3.1. The z-dependence in 𝑆(𝜏, 𝑧)𝜇𝜈 arises only from the input 𝜙𝜈
𝑧−𝜓𝑛+2

in
Equation (8) at the last marked point. Let 𝐸 𝛼 denote the fixed-point component on which 𝜙𝜈 is sup-
ported. By fixed-point localization, we see that 𝑆(𝜏, 𝑧)𝜇𝜈 is a sum of contributions from fixed-point
components 𝐸Γ

0,𝑛+2,𝑑 where the graphs Γ can be described as follows. A typical Γ has a distinguished
vertex, called the head vertex, that carries the (𝑛 + 2)nd marked point with insertion 𝜙𝜈

𝑧−𝜓𝑛+2
. The head

vertex is a stable map to 𝐸 𝛼; it is incident to m trees (the ends) that do not carry the first marked point and
also to one distinguished tree (the tail) that carries the first marked point. Thus, 𝑆(𝜏, 𝑧)𝜇𝜈 has the form

𝛿𝜇𝜈 +
∑
𝛽:𝛽→𝛼

∞∑
𝑘=1

(
𝑇 𝑘𝛽,𝛼 (𝜙

𝜇), 𝜙𝜈
)

𝜒𝛼𝛽

𝑘 + 𝑧
+

∑
𝑑

∞∑
𝑚=0

𝑄𝑑

𝑚!

〈
𝜙𝜇 +

∑
𝛽:𝛽→𝛼

∞∑
𝑘=1

𝑇 𝑘𝛽,𝛼 (𝜙
𝜇)

𝜒𝛼𝛽

𝑘 − 𝜓1
, 𝜖𝛼 (𝜓2), . . . , 𝜖𝛼 (𝜓𝑚+1),

𝜙𝜈
𝑧 − 𝜓𝑚+2

〉𝐵,tw,𝛼
0,𝑚+2,𝑑

,

(13)

where the correlators represent integration over the moduli space of stable maps given by the head
vertex, 𝜖𝛼 represents the contribution of all possible ends, the linear map 𝑇 𝑘𝛽,𝛼 : 𝐻•

𝑇 (𝐸) → 𝐻•
𝑇 (𝐸

𝛼;Ξ)
records the contribution of all possible tails that approach 𝐸 𝛼 along an edge from the T-fixed component
𝐸𝛽 ⊂ 𝐸 with multiplicity k and 𝜒𝛼𝛽 is the cohomology class on 𝐸 𝛼 � 𝐵 defined in Section 3.1. The sum
is over degrees 𝑑 ∈ 𝐻2(𝐵;Z), and 𝑄𝑑 represents, in the Novikov ring of E, the degree of these curves in
𝐸 𝛼 � 𝐵. Here, 𝜖𝛼 = 𝜏 modulo Novikov variables, as we include in our definition of 𝜖𝛼 the degenerate
case where the end consists just of a single marked point attached to the head vertex. Except 𝛿𝜇𝜈 , the
terms on the first line of Equation (13) arise from those exceptional graphs Γ where the head vertex is
unstable as a map to 𝐸 𝛼 � 𝐵, that is, where the head vertex is a type-3 vertex in the sense of §3.2.

In fact, Equation (13) can be written as

𝛿𝜇𝜈 +
∑
𝛽:𝛽→𝛼

∞∑
𝑘=1

1
𝑧 + 𝜒𝛼𝛽

𝑘

(
𝑆𝛼,𝑡𝑤

(
𝑢𝛼 (𝜏),

𝜒𝛼𝛽

𝑘

)
𝑇 𝑘𝛽,𝛼 (𝜙

𝜇), 𝑆𝛼,𝑡𝑤
(
𝑢𝛼 (𝜏), 𝑧

)
𝜙𝜈

)𝛼,𝑡𝑤
, (14)

where (·, ·)𝛼,𝑡𝑤 is the twisted Poincaré pairing on 𝐸 𝛼. This is a consequence of a general result about
the structure of genus-zero Gromov–Witten invariants, applied to the Gromov–Witten theory8 of 𝐸 𝛼.

8By the Gromov–Witten theory of 𝐸𝛼 here we mean the Gromov–Witten theory of B twisted by the normal bundle 𝑁 𝛼 to
𝐸𝛼 � 𝐵 and the equivariant inverse Euler class.
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Recall that the tangent space to the Lagrangian cone L𝑡𝑤𝐸𝛼 at the point t ∈ H+ is the graph of the
differential of the quadratic form on H+ given by

𝜖 ↦−→ Res𝑧=0 Res𝑤=0 V(t,−𝑤,−𝑧)
(
𝜖 (𝑧), 𝜖 (𝑤)

)
𝑑𝑧 𝑑𝑤,

where

V(t, 𝑤, 𝑧)
(
𝜖1, 𝜖2

)
=

(
𝜖1 (𝑧), 𝜖2 (𝑤)

)𝛼,tw
𝑧 + 𝑤

+
∑
𝑑

∞∑
𝑛=0

𝑄𝑑

𝑛!

〈
𝜖1 (𝑧)
𝑧 − 𝜓1

, t(𝜓2), t(𝜓3), . . . , t(𝜓𝑛+1),
𝜖2 (𝑤)

𝑤 − 𝜓𝑛+2

〉𝐵,𝛼,tw
0,𝑛+2,𝑑

.

But this tangent space has the form 𝑆𝛼,𝑡𝑤 (𝑢𝛼, 𝑧)−1H+ for some point 𝑢𝛼 ∈ 𝐻•
𝑇 (𝐸

𝛼) that is determined
by t. In fact,

𝑢𝛼 =
∑
𝜖

∑
𝑑

∞∑
𝑛=0

𝑄𝑑

𝑛!
〈1, 𝜙𝜖 , t, . . . , t〉𝛼,𝑡𝑤0,𝑛+2,𝑑 𝜙𝜖 , (15)

where the sum is over 𝜖 such that 𝜙𝜖 is supported on 𝐸 𝛼; this is the Dijkgraaf–Witten formula
[7, Equation (2.2)] (in the context of Gromov-Witten theory, see also the proof of [15, Theorem 1] and
[11, Section 4.4]). As a result,

V(t, 𝑤, 𝑧)
(
𝜖1, 𝜖2

)
= V(𝑢𝛼, 𝑤, 𝑧)

(
𝜖1, 𝜖2

)
=

1
𝑧 + 𝑤

(
𝑆𝛼,𝑡𝑤 (𝑢𝛼, 𝑧)𝜖1(𝑧), 𝑆𝛼,𝑡𝑤 (𝑢𝛼, 𝑤)𝜖1(𝑤)

)𝛼,𝑡𝑤
,

where we used Equation (11). Applying this to Equation (13) yields Equation (14), where 𝑢𝛼 (𝜏) is
given by Equation (15) with t replaced by the contribution 𝜖𝛼 from all possible ends.

Setting

𝑅(𝜏, 𝑧) = Id+
∑
𝛼∈𝐹

∑
𝛽:𝛽→𝛼

∞∑
𝑘=1

1
𝑧 + 𝜒𝛼𝛽

𝑘

(
𝑇 𝑘𝛽,𝛼

)∗
𝑆𝛼,𝑡𝑤

(
𝑢𝛼 (𝜏),

𝜒𝛼𝛽

𝑘

)∗ (16)

yields the result. This expression has no pole at 𝑧 = 0. �

Remark 3.4. The end contribution 𝜖𝛼 occurring in the proof of Proposition 3.1 can be identified in
terms of fixed-point localization for the J-function:

𝐽 (𝜏,−𝑧)
&&
𝐸𝛼 = −1𝑧 + 𝜖𝛼 (𝑧) +

∑
𝑑

∞∑
𝑚=0

∑
𝜈

𝑄𝑑

𝑚!

〈
𝜖𝛼 (𝜓1), . . . , 𝜖𝛼 (𝜓𝑚),

𝜙𝜈

𝑧 − 𝜓𝑚+1

〉𝐵,𝛼,𝑡𝑤
0,𝑚+1,𝑑

𝜙𝜈
&&
𝐸𝛼 ,

where we processed the virtual localization formulas exactly as in the proof of Proposition 3.1. Since
𝜓𝑛+1 is nilpotent, the correlator terms have poles (and no regular part) at 𝑧 = 0. At the same time, the
summand 𝜖𝛼 (𝑧) has no pole at 𝑧 = 0, as it is equal to 𝜏 |𝐸𝛼 plus a sum of terms of the form 𝑐

−𝑧+𝜒𝛼𝛽/𝑘 ,
where c is independent of z. Thus,

𝜖𝛼 (𝑧) = 𝑧 +
[
𝐽 (𝜏,−𝑧)

&&
𝐸𝛼

]
+
= 𝑧 −

[
𝑧𝑆(𝜏,−𝑧)∗1

&&
𝐸𝛼

]
+
, (17)

where [·]+ denotes taking the power series part of the Laurent expansion at 𝑧 = 0. For the last equality
here, we used Equation (11).

3.5. Virtual Localization for the ancestor potential

We will use virtual localization to express generating functions for Gromov–Witten invariants of E in
terms of generating functions for twisted Gromov–Witten invariants of 𝐸𝑇 . The T-equivariant total
ancestor potential of E is
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A(𝜏; t) = exp ���
∞∑
𝑔=0

ℏ𝑔−1F̄𝑔 (𝜏; t)	
� , (18)

where F̄𝑔 is the T-equivariant genus-g ancestor potential:9

F̄𝑔 (𝜏; t) =
∑

𝑑∈𝐻2 (𝐸)

∞∑
𝑚=0

∞∑
𝑛=0

𝑄𝑑

𝑚!𝑛!

∫
[𝐸𝑔,𝑚+𝑛,𝑑 ]vir

𝑚∏
𝑖=1

( ∞∑
𝑘=0

ev∗𝑖 (𝑡𝑘 )�̄�𝑘𝑖

)
𝑚+𝑛∏
𝑖=𝑚+1

ev∗𝑖 𝜏.

Here, 𝜏 ∈ 𝐻•
𝑇 (𝐸), t = 𝑡0 + 𝑡1𝑧 + 𝑡2𝑧

2 + · · · ∈ 𝐻•
𝑇 (𝐸) [𝑧], 𝑄

𝑑 is the representative of 𝑑 ∈ 𝐻2 (𝐸 ;Z) in
the Novikov ring, ev𝑖 : 𝐸𝑔,𝑛,𝑑 → 𝐸 is the evaluation map at the ith marked point, and the ‘ith ancestor
class’ �̄�𝑖 ∈ 𝐻2

𝑇 (𝐸𝑔,𝑚+𝑛,𝑑;Q) is the pullback of the cotangent line class 𝜓𝑖 ∈ 𝐻2(M𝑔,𝑚;Q) along the
contraction morphism ct : 𝐸𝑔,𝑚+𝑛,𝑑 → M𝑔,𝑚 that forgets the map and the last n marked points and
then stabilizes the resulting m-pointed curve. We will express the total ancestor potential A, via virtual
localization in terms of the total ancestor potentials A𝛼,𝑡𝑤𝐵 of the base manifold B twisted [6] by the
T-equivariant inverse Euler class of the normal bundle 𝑁𝛼 to the T-fixed locus 𝐸 𝛼 � 𝐵 in E. These
are defined exactly as above, but replacing E by B and replacing the virtual class [𝐸𝑔,𝑚+𝑛,𝑑]vir by
[𝐵𝑔,𝑚+𝑛,𝑑]vir ∩ 𝑒−1

𝑇

(
𝑁𝛼𝑔,𝑚+𝑛,𝑑

)
for an appropriate twisting class 𝑁𝛼𝑔,𝑚+𝑛,𝑑 ∈ 𝐾0

𝑇 (𝐵𝑔,𝑚+𝑛,𝑑).

Theorem 3.5.

A(𝜏; t) = �𝑅(𝜏) ∏
𝛼∈𝐹

A𝛼,𝑡𝑤𝐵 (𝑢𝛼 (𝜏); t𝛼),

where t = ⊕𝛼∈𝐹 t𝛼 with t𝛼 ∈ 𝐻∗
𝑇 (𝐸

𝛼) [𝑧] and �𝑅(𝜏) is the quantization of the linear symplectomorphism
𝑓 ↦→ 𝑅(𝜏, 𝑧) 𝑓 , and the map 𝜏 ↦→ ⊕𝛼∈𝐹𝑢𝛼 (𝜏) is defined by Equation (15).

The rest of this Section contains a proof of Theorem 3.5. According to [13, Proposition 7.3], the
action of �𝑅(𝜏) is given by a Wick-type formula

�𝑅(𝜏) (∏
𝛼∈𝐹

A𝛼,𝑡𝑤𝐵

(
𝑢𝛼 (𝜏); t𝛼

))
=

(
exp(Δ)

∏
𝛼∈𝐹

A𝛼,𝑡𝑤𝐵

(
𝑢𝛼 (𝜏), t𝛼

))&&&&& t↦→𝑅 (𝜏,𝑧)−1t+𝑧 (Id−𝑅 (𝜏,𝑧)−1)1, (19)

where the propagator Δ , which depends on 𝜏, is defined by

Δ =
ℏ
2

∑
𝑖, 𝑗

∑
𝜆,𝜇

Δ 𝑖 𝑗𝜆,𝜇
𝜕

𝜕𝑡𝜆𝑖

𝜕

𝜕𝑡
𝜇
𝑗

and
∑
𝑖, 𝑗

∑
𝜆

Δ 𝑖 𝑗𝜆,𝜇 (−1)𝑖+ 𝑗𝑤𝑖𝑧 𝑗𝜙𝜆 =
(
𝑅(𝜏, 𝑤)∗𝑅(𝜏, 𝑧) − Id

𝑤 + 𝑧

)
𝜙𝜇 .

We will compute the T-equivariant total ancestor potential A(𝜏; t) using virtual localization, obtaining
a Wick-type formula which matches precisely with Equation (19).

We begin by factoring the fixed point loci 𝐸𝑇𝑔,𝑚+𝑛,𝑑 into ‘macroscopic’ pieces called stable vertices,
stable edges, tails and ends, which are defined somewhat informally as follows. Given a T-fixed stable
map 𝐶 → 𝐸 with 𝑚 + 𝑛 marked points, forgetting the last n marked points yields a stable curve
𝐶 ′ with m marked points, and a stabilization morphism 𝐶 → 𝐶 ′ given by contracting the unstable
components. We label points of C according to their fate under the stabilization morphism: a tree of
rational components of C which contracts to a node, a marked point or a regular point of 𝐶 ′ is called,
respectively, a stable edge, a tail or an end, while each maximal connected component of C which
remains intact in 𝐶 ′ is called a stable vertex. Under virtual localization, the contribution of 𝐸𝑇𝑔,𝑚+𝑛,𝑑
into A𝐸 can be assembled from these pieces. We will see that the contributions from stable edges, tails
and ends together give rise to the operator R, while the contribution of stable vertices gives

∏
𝛼∈𝐹 A𝛼,𝑡𝑤𝐵 .

9Integrals over nonexisting moduli spaces are defined to be 0.
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More formally, virtual localization expresses A(𝜏; t) as a sum over T-fixed strata 𝐸Γ
𝑔,𝑛,𝑑 in 𝐸𝑔,𝑚+𝑛,𝑑

which are indexed by decorated graphs Γ as in §3.2. Consider a prestable curve C with combinatorial
structure Γ and the curve 𝐶 ′ obtained from C by forgetting the last n marked points and contracting
unstable components. The curve C can be partitioned into pieces according to the fate of points of C
under this process. Those components of C that survive as components of 𝐶 ′ are called stable vertices
of C. Maximal connected subsets which contract to nodes of 𝐶 ′ are called stable edges of C. Maximal
connected subsets which contract to a marked point of 𝐶 ′ are called tails. Maximal connected subsets
which contract to smooth unmarked points of 𝐶 ′ are called ends. We denote by ct(Γ) the combinatorial
structure of 𝐶 ′, that is, the graph 𝛾 with vertices and edges given respectively by the stable vertices and
stable edges and with each vertex decorated by its genus and number of tails. We arrange the sum over
Γ from virtual localization according to the stable graphs ct(Γ):

A(𝜏; t) =
∑
Γ

𝑐Γ =
∑
𝛾

∑
Γ:ct(Γ)=𝛾

𝑐Γ .

We begin by analysing certain integrals over stable vertices which occur in the virtual localization
formulas. These take the form〈

𝑇1 (�̄�1)
𝜒1 − 𝜓1

, . . . ,
𝑇𝑚 (�̄�𝑚)
𝜒𝑚 − 𝜓𝑚

, 𝜖𝛼 (𝜓𝑚+1), . . . , 𝜖𝛼 (𝜓𝑚+𝑛)
〉𝛼,𝑡𝑤
𝑔,𝑚+𝑛,𝑑

, (20)

where 𝑇1, . . . , 𝑇𝑚 arise from tails and/or stable edges, 𝜖𝛼 arises from ends, and each 𝜒𝑖 is equal to 𝜒𝛼𝛽

𝑘
for some 𝛽 → 𝛼 and some 𝑘 ∈ N. Note the presence of descendant classes 𝜓𝑖 . Our first task is to express
these vertex integrals in terms of ancestor potentials, where no descendant classes occur. Consider the
sum ∑

𝑑,𝑛

𝑄𝑑

𝑛!

〈
𝑇1 (�̄�1)
𝜒1 − 𝜓1

, . . . ,
𝑇𝑚 (�̄�𝑚)
𝜒𝑚 − 𝜓𝑚

, 𝜖𝛼 (𝜓𝑚+1), . . . , 𝜖𝛼 (𝜓𝑚+𝑛)
〉𝛼,𝑡𝑤
𝑔,𝑚+𝑛,𝑑

(21)

and note the identity

𝑇𝑖 (𝑦)
𝜒𝑖 − 𝑥

=
𝑇𝑖 (𝑦)
𝜒𝑖 − 𝑦

+ (𝑥 − 𝑦)𝑇𝑖 (𝑦)
(𝜒𝑖 − 𝑥) (𝜒𝑖 − 𝑦) (22)

in 𝐻•
𝑇 (𝐸) [[𝑥, 𝑦]]. We can replace the insertion 𝑇𝑖 ( �̄�𝑖)𝜒𝑖−𝜓𝑖 in Equation (21) first by the right-hand side of

Equation (22) with 𝑥 = 𝜓𝑖 and 𝑦 = �̄�𝑖 , and then by

𝑇𝑖 (�̄�𝑖)
𝜒𝑖 − �̄�𝑖

+
∑
𝑛,𝑑

𝑄𝑑

𝑛!

∑
𝜇,𝜈

𝜙𝜇

〈
𝜙𝜇

𝜒𝑖 − 𝜓1
, 𝜖𝛼 (𝜓2), . . . , 𝜖𝛼 (𝜓𝑛+1), 𝜙𝜈

〉𝛼,𝑡𝑤
0,𝑛+2,𝑑

(
𝜙𝜈 ,

𝑇𝑖 (�̄�𝑖)
𝜒𝑖 − �̄�𝑖

)𝛼,𝑡𝑤
. (23)

Here, we used the fact, first exploited by Getzler [11] and Kontsevich–Manin [21], that 𝜓𝑖 − �̄�𝑖 is
Poincaré-dual to the virtual divisor which is total range of the gluing map⊔

𝑛1+𝑛2=𝑛
𝑑1+𝑑2=𝑑

𝐸0,𝑛1+2,𝑑1 ×𝐸 𝐸𝑔,𝑚−1+𝑛2+1,𝑑2 −→ 𝐸𝑔,𝑚+𝑛,𝑑

that attaches a genus-zero stable map carrying the ith marked point and 𝑛1 marked points with insertions
in {𝑚 + 1, . . . , 𝑚 + 𝑛} to a genus-g stable map carrying the marked points 1, . . . , 𝑚 omitting i, and 𝑛2
marked points with insertions in {𝑚 + 1, . . . , 𝑚 + 𝑛}. The insertion (23) simplifies to

𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝜒𝑖)𝑇 (�̄�𝑖)
𝜒𝑖 − �̄�𝑖

(24)
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using [15, equation 2] and the fact that the contribution 𝜖𝛼 from ends here coincides with the contribution
𝜖𝛼 from ends in genus zero which occurred in Equation (15). In what follows, we will see that whenever
contributions from tails and stable edges are expressed in terms of �̄�𝑖-classes, the transformations
𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝜒𝑖) will occur. We call these transformations the dressing factors.

Consider the following generating function which we call the mixed potential:

A(𝝐 ; t) = exp ���
∞∑
𝑔=0

∞∑
𝑚,𝑛=0

∑
𝑑

ℏ𝑔−1𝑄𝑑

𝑚!𝑛!
〈
t(�̄�1), . . . , t(�̄�𝑚); 𝝐 (𝜓𝑚+1), . . . , 𝝐 (𝜓𝑚+𝑛)

〉
𝑔,𝑚+𝑛,𝑑

	
� .
Note that specializing 𝝐 ∈ H+ to 𝜏 ∈ 𝐻•

𝑇 (𝐸) ⊂ H+ recovers the ancestor potential A(𝜏; t). The notion of
mixed potential makes sense for a general Gromov–Witten-type theory, including the Gromov–Witten
theory of arbitrary target spaces (equivariant or not), twisted Gromov–Witten theory, and so on and
Proposition 3.6 below expresses the mixed potential of such a theory in terms of the ancestor potential for
that theory. The argument just given showed that the sum (21) can be expressed by including appropriate
dressing factors, in terms of the mixed potential associated to the twisted Gromov–Witten theory of the
T-fixed locus 𝐸 𝛼.

Proposition 3.6.

A(𝝐 ; t) = A
(
𝑢(𝝐); t +

[
𝑆(𝑢(𝝐), 𝑧) (𝝐 (𝑧) − 𝑢(𝝐))

]
+

)
,

where 𝑢(𝝐) ∈ 𝐻 is characterized by[
𝑆(𝑢(𝝐), 𝑧)

(
𝝐 (𝑧) − 𝑢(𝝐)

) ]
+ ∈ 𝑧H+.

Proof. Set y(𝑧) = 𝝐 (𝑧) − 𝑢(𝝐) so that

A(𝝐 ; t) = exp ���
∞∑
𝑔=0

∞∑
𝑘,𝑙,𝑚=0

∑
𝑑

ℏ𝑔−1𝑄𝑑

𝑘!𝑙!𝑚!
〈
t(�̄�1), . . . , t(�̄�𝑚); y(𝜓𝑚+1), . . . , y(𝜓𝑚+𝑘 ), 𝑢(𝝐), . . . , 𝑢(𝝐)

〉
𝑔,𝑘+𝑙+𝑚,𝑑

	
� .
Then consider the morphism 𝑋𝑔,𝑚+𝑘+𝑙,𝑑 → M𝑔,𝑚+𝑘 forgetting the map and the last l marked points
and then stabilizing; the Getzler/Kontsevich–Manin ancestor-to-descendant argument discussed above
then gives

A(𝝐 ; t) = exp ���
∞∑
𝑔=0

∞∑
𝑘,𝑙,𝑚=0

∑
𝑑

ℏ𝑔−1𝑄𝑑

𝑘!𝑙!𝑚!

〈
t( ¯̄𝜓1), . . . , t( ¯̄𝜓𝑚), x(�̄�𝑚+1), . . . , x(�̄�𝑚+𝑘 ); 𝑢(𝝐), . . . , 𝑢(𝝐)

〉
𝑔,𝑘+𝑙+𝑚,𝑑

	
� ,
where x(𝑧) =

[
𝑆(𝑢(𝝐), 𝑧)y(𝑧)

]
+ and the classes ¯̄𝜓𝑖 differ from the ancestor classes �̄�𝑖 by being lifts of

𝜓-classes from M𝑔,𝑚 rather than from M𝑔,𝑚+𝑘 . For 𝜓-classes on Deligne–Mumford spaces, we have(
𝑚+𝑘∏
𝑟=𝑚+1

𝜓𝑟

)
∪ (𝜓𝑖 − 𝜋∗𝜓𝑖) = 0 for 𝑖 = 1, 2, . . . , 𝑚,

where 𝜋 : M𝑔,𝑚+𝑘 → M𝑔,𝑚 is the map that forgets the last k marked points and then stabilizes. This is
because 𝜓𝑖 − 𝜋∗𝜓𝑖 is the divisor in M𝑔,𝑚+𝑘 given by the image of the gluing map⊔

𝑘1+𝑘2=𝑘

M𝑔,𝑚−1+𝑘2+1 ×M0,𝑘1+1 → M𝑔,𝑚+𝑘 ,
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where the second factor carries 𝑘1 marked points with indices in {𝑚 + 1, . . . , 𝑚 + 𝑘}, and on this divisor
the product

∏𝑚+𝑘
𝑟=𝑚+1 𝜓𝑟 vanishes for dimensional reasons. Thus,(

𝑚+𝑘∏
𝑟=𝑚+1

�̄�𝑟

)
∪ (�̄�𝑖 − ¯̄𝜓𝑖) = 0 for 𝑖 = 1, 2, . . . , 𝑚

and, since x(𝑧) is divisible by z – this is exactly how we chose 𝑢(𝝐) – we may replace ¯̄𝜓𝑖s by �̄�𝑖s in our
expression for A(𝝐 , t) above. Polylinearity then gives the proposition. �

Now, we apply Proposition 3.6 to the twisted Gromov–Witten theory of the T-fixed locus 𝐸𝛼 so that S
there is 𝑆𝛼,𝑡𝑤 . We will show that if we set 𝝐 equal to the end contribution 𝜖𝛼 in the vertex integrals (21),
then 𝑢(𝝐) becomes the block-canonical coordinate 𝑢𝛼 (𝜏) defined in Proposition 3.1 and that[

𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝑧) (𝜖𝛼 (𝑧) − 𝑢𝛼 (𝜏))
]
+ = 𝑧

(
Id−𝑅(𝜏, 𝑧)−1)1. (25)

Note that this precisely matches the contribution to Wick’s formula in Equation (19). Since
𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝑧) is a power series in 𝑧−1, we have[

𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝑧)
[
𝐴
]
+

]
+
=
[
𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝑧) 𝐴

]
+

for any A. From Equation (17), we have

𝜖𝛼 (𝑧) = 𝑧 −
[
𝑧𝑆(𝜏,−𝑧)∗1

&&
𝐸𝛼

]
+

and Proposition 3.1 gives

𝑆(𝜏,−𝑧)∗1
&&
𝐸𝛼 = 𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏),−𝑧)∗

(
𝑅(𝜏,−𝑧)∗1

&&
𝐸𝛼

)
.

We compute [
𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝑧) (𝜖𝛼 (𝑧) − 𝑢𝛼 (𝜏))

]
+ = 𝑧 + 𝑢𝛼 (𝜏) − 𝑧𝑅(𝜏,−𝑧)∗1

&&
𝐸𝛼 − 𝑢𝛼 (𝜏),

where the first two terms are
[
𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝑧)𝑧

]
+, the last term is

[
𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝑧)𝑢𝛼 (𝜏)

]
+ and we

used 𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏), 𝑧)𝑆𝛼,𝑡𝑤 (𝑢𝛼 (𝜏),−𝑧)∗ = Id. The right-hand side here lies in 𝑧H+, and therefore
𝑢(𝜖𝛼) = 𝑢𝛼 (𝜏), as claimed; furthermore, since 𝑅(𝜏,−𝑧)∗𝑅(𝜏, 𝑧) = Id we obtain Equation (25).

We return now to the integrals (20) over stable vertices. Here, tails – which carry one nonforgotten
marked point each – give rise to insertions of

t(�̄�) +
∑
𝛼∈𝐹

∑
𝛽:𝛽→𝛼

∞∑
𝑘=1

1
𝜒𝛼𝛽

𝑘 − 𝜓
𝑇 𝑘𝛽,𝛼t(�̄�),

where the linear maps 𝑇 𝑘𝛽,𝛼 were defined in the proof of Proposition 3.1 and t is the argument of the
ancestor potential (18). Applying Equations (22–24), we can write this in terms of �̄� only by including
dressing factors:

t(�̄�) +
∑
𝛼∈𝐹

∑
𝛽:𝛽→𝛼

∞∑
𝑘=1

1
𝜒𝛼𝛽

𝑘 − �̄�
𝑆𝛼,𝑡𝑤

(
𝑢𝛼 (𝜏),

𝜒𝛼𝛽

𝑘

)
𝑇 𝑘𝛽,𝛼t(�̄�).

From Equation (16) and 𝑅(𝜏,−𝑧)∗𝑅(𝜏, 𝑧) = Id, we see that this is
(
𝑅(𝜏, 𝑧)−1t(𝑧)

)&&
𝐸𝛼 with 𝑧 = �̄�. Again,

this precisely matches the contribution to Wick’s formula in Equation (19).
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In the localization formula for the ancestor potential, the edge contributions occur in the form∑
𝛽→𝛼

∑
𝛽′→𝛼′

∞∑
𝑘=1

∞∑
𝑘′=1

𝐸 𝑘,𝑘
′

𝛽→𝛼,𝛽′→𝛼′(
𝜒𝛼𝛽

𝑘 − 𝜓
) (
𝜒𝛼′𝛽′

𝑘′ − 𝜓 ′
)
,
,

each functioning as two vertex insertions (which may be to the same vertex or different vertices). Here,
𝜓 and 𝜓 ′ are the 𝜓-classes on the vertex moduli spaces at the corresponding marked points, and the class
𝐸 𝑘,𝑘

′

𝛽→𝛼,𝛽′→𝛼′ ∈ 𝐻•
𝑇 (𝐵) ⊗ 𝐻•

𝑇 (𝐵) is pulled back to these moduli spaces by the product ev× ev′ of the
corresponding evaluation maps. This expression participates, in the same role, in localization formulas
for the genus-zero quantity 𝑉 (𝜏, 𝑤, 𝑧). As before, we can replace 𝜓-classes by �̄�-classes provided that
we introduce dressing factors:

∑
𝛽→𝛼

∑
𝛽′→𝛼′

∞∑
𝑘=1

∞∑
𝑘′=1

𝑆𝛼,𝑡𝑤
(
𝑢𝛼 (𝜏),

𝜒𝛼𝛽

𝑘

)
⊗ 𝑆𝛼

′,𝑡𝑤
(
𝑢𝛼′ (𝜏),

𝜒𝛼′𝛽′

𝑘′
) (
𝐸 𝑘,𝑘

′

𝛽→𝛼,𝛽′→𝛼′
)

(
𝜒𝛼𝛽

𝑘 − �̄�
) (
𝜒𝛼′𝛽′

𝑘′ − �̄� ′
) =: 𝐸𝛼,𝛼′ (�̄�, �̄� ′).

Computing 𝑉 (𝜏, 𝑤, 𝑧) by virtual localization, as in the proof of Proposition 3.1, and applying the
identities

𝑉 𝛼,𝑡𝑤
(
𝑢𝛼, 𝑧,

𝜒𝛼𝛽

𝑘

)
=

𝑆𝛼,𝑡𝑤
(
𝑢𝛼, 𝑧

)∗
𝑆𝛼,𝑡𝑤

(
𝑢𝛼,

𝜒𝛼𝛽

𝑘

)
𝑧 + 𝜒𝛼𝛽

𝑘

for each 𝛼 ∈ 𝐹, 𝛽 → 𝛼, and 𝑘 ∈ {1, 2, . . .} yields

𝑉 (𝜏, 𝑧, 𝑧′) = 𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏, 𝑧)∗ ◦
(

Id
𝑧 + 𝑧′

+
⊕
𝛼,𝛼′ ∈𝐹

𝐸𝛼,𝛼′ (𝑧, 𝑧′)
)
◦ 𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏, 𝑧′),

where we regard the bivector 𝐸𝛼,𝛼′ as an operator via the twisted Poincaré pairing. But

𝑉 (𝜏, 𝑧, 𝑧′) = 𝑆(𝜏, 𝑧)∗𝑆(𝜏, 𝑧′)
𝑧 + 𝑧′

=
𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏, 𝑧)∗𝑅(𝜏, 𝑧)∗𝑅(𝜏, 𝑧′)𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏, 𝑧′)

𝑧 + 𝑧′

from Equation (11) and Proposition 3.1, and we conclude that⊕
𝛼,𝛼′ ∈𝐹

𝐸𝛼,𝛼′ (𝑧, 𝑧′) =
𝑅(𝜏, 𝑧)∗𝑅(𝜏, 𝑧′) − Id

𝑧 + 𝑧′
.

In other words, the edge contributions 𝐸𝛼,𝛼′ (which include dressing factors) are precisely what is
inserted by the propagator in Wick’s formula (19). This completes the proof of Theorem 3.5.

Remark 3.7. Consider a Kähler manifold E equipped with the action of a torus T, with no further as-
sumptions about the structure of the fixed point manifold 𝐸𝑇 or the one-dimensional orbits. Theorem 3.5
can be extended to this general situation. First, virtual localization in genus zero shows, as in §3.4, that
the fundamental solution matrix 𝑆𝐸 (𝜏, 𝑧) can be factored as

𝑆𝐸 (𝜏, 𝑧) = 𝑅(𝜏, 𝑧) 𝑆𝑡𝑤
𝐸𝑇

(
𝑢(𝜏), 𝑧

)
,

where R is a power series in z, and 𝜏 ↦→ 𝑢(𝜏) is a certain nonlinear diffeomorphism between the
parameter spaces 𝐻•

𝑇 (𝐸) and 𝐻•
𝑇 (𝐸

𝑇 ) which is defined over the field of fractions of the coefficient
ring 𝐻•

𝑇 ({point}) tensored with suitable Novikov ring (and can be specified in terms of genus-zero
Gromov–Witten invariants). Then, virtual localization in all genera shows that

A𝐸 (𝜏; t) = �𝑅(𝜏)A𝑡𝑤
𝐸𝑇

(
𝑢(𝜏); t|𝐸𝑇

)
.
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However, we refrained from phrasing our proof of Theorem 3.5 in this abstract setting. In the context
of general torus actions, one-dimensional 𝑇C-orbits – called legs in §3.2 – may depend on parameters.
Some foundational work is needed here – a systematic description of leg moduli spaces and their
virtual fundamental cycles – and establishing these details, which are unimportant to the essence of our
argument, would carry us too far away from the current aim. This is the only reason why we limit the
proof of Theorem 3.5 to the case of toric bundles.

4. The nonequivariant limit

As discussed in the Introduction, combining Theorem 3.5 with the quantum Riemann–Roch theorem
yields

𝑒𝐹
𝑒𝑞 (𝜏)A𝑒𝑞 (𝜏) = 𝑒𝐹

𝑒𝑞 (𝜏)−
∑

𝛼 𝐹
𝛼,𝑡𝑤
𝐵 (𝑢𝛼 (𝜏))�𝑅(𝜏) �𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏)�Γ−1

𝑏𝑙𝑜𝑐𝑘

∏
𝛼∈𝐹

D𝐵, (26)

where Γ𝑏𝑙𝑜𝑐𝑘 = ⊕𝛼∈𝐹Γ𝛼 and 𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏) = ⊕𝛼∈𝐹𝑆𝛼,𝑡𝑤
(
𝑢𝛼 (𝜏)

)
. Thus, the T-equivariant ancestor

potential A𝑒𝑞 (𝜏) for E is obtained from D⊗ |𝐹 |
𝐵 by the application of quantized loop group operators.

We need to show that the same is true for the nonequivariant ancestor potential A𝐸 (𝜏) of E, and so we
need to analyse the nonequivariant limit of Equation (26).

Note first that the products 𝑆𝛼,𝑡𝑤 (𝑢𝛼) Γ−1
𝛼 can be Birkhoff-factorized as

𝑆𝛼,𝑡𝑤 (𝑢𝛼, 𝑧) Γ−1
𝛼 (𝑧) = 𝑅𝛼 (𝑢𝛼, 𝑧) 𝑆𝐵

(
𝜏∗𝛼 (𝑢𝛼), 𝑧

)
,

where 𝑅𝛼 is an operator-valued power series in z, and 𝑢 ↦→ 𝜏∗𝛼 (𝑢) is a nonlinear change of coordinates10

on 𝐻•(𝐵). Indeed, the quantum Riemann–Roch theorem [6] implies that Γ−1
𝛼 transforms the overruled

Lagrangian cone L𝐵 defined by the genus-zero Gromov–Witten theory of B into the overruled cone
L𝛼,𝑡𝑤 for the twisted theory: L𝛼,𝑡𝑤 = Γ−1

𝛼 L𝐵. Thus, the operator 𝑅𝛼 on the space H𝐵+ = 𝐻𝐵 [[𝑧]] is
obtained from the following composition:

𝑅−1
𝛼 : H𝐵+

𝑆𝛼,𝑡𝑤 (𝑢)−1
�� 𝑇𝑢L𝛼,𝑡𝑤

Γ𝛼 �� 𝑇𝜏∗𝛼L𝐵
𝑆𝐵 (𝜏∗𝛼) �� H𝐵+

and so

𝑅(𝜏) 𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏) Γ−1
𝑏𝑙𝑜𝑐𝑘 = 𝑅′(𝜏)

(⊕
𝛼∈𝐹

𝑆𝐵
(
𝜏∗𝛼 (𝑢𝛼 (𝜏))

))
,

where 𝑅′(𝜏) := 𝑅(𝜏)
(
⊕𝛼∈𝐹 𝑅𝛼

(
𝑢𝛼 (𝜏)

) )
is an operator-valued power series in z. Consequently, for

some scalar functions c and 𝑐, we have

A𝑒𝑞𝐸 (𝜏) = 𝑒𝑐 (𝜏) �𝑅′(𝜏)
∏
𝛼∈𝐹

A𝐵 (𝜏∗𝛼) and D𝑒𝑞𝐸 = 𝑒�̃� (𝜏) �𝑆𝐸 (𝜏)−1 �𝑅′(𝜏)
∏
𝛼∈𝐹

�𝑆𝐵 (𝜏∗𝛼)D𝐵 . (27)

Note that the relation between 𝜏 ∈ 𝐻•
𝑇 (𝐸) and ⊕𝛼∈𝐹𝜏∗𝛼 ∈ 𝐻•

𝑇 (𝐸
𝑇 ) here is a complicated change of

variables, given by composing the Dijkgraaf–Witten maps 𝜏 ↦→ 𝑢𝛼 (𝜏) with the mirror maps 𝑢𝛼 ↦→
𝜏∗𝛼 (𝑢𝛼).

In this section, we show that, at least for some range11 of 𝜏, the operator 𝑅′ has a well-defined
nonequivariant limit. The ingredients here are Brown’s mirror theorem for toric bundles [4], which
provides a certain family of elements 𝐼𝐸 (𝑡, 𝜏𝐵,−𝑧) on the Lagrangian cone L𝐸 for the T-equivariant

10This is the ‘mirror map’.
11It suffices to establish that the nonequivariant limit exists for a single value of 𝜏 since D𝑒𝑞

𝐸 and D𝐵 are independent of 𝜏.
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Gromov–Witten theory of E and an analysis of the stationary phase asymptotics of the oscillating
integrals that form the mirror for the toric fiber X of E. Since all other ingredients in Equation (27) –
A𝑒𝑞𝐸 , A𝐵, D𝑒𝑞𝐸 , D𝐵, 𝑆𝐸 and 𝑆𝐵 – also have well-defined nonequivariant limits, it follows that the same
is true for 𝑐 and c. Thus, the entire formula (27) relating D𝐸 to D⊗ |𝐹 |

𝐵 by the action of a quantized loop
group operator admits a nonequivariant limit. Finally, in §4.4 we complete the proof of Theorem 1.4,
by checking that, in the nonequivariant limit, this loop group operator is grading preserving.

4.1. The I-function of E

Recall that our toric bundle 𝐸 → 𝐵 is obtained from the total space of a direct sum of line bundles
𝐿1 ⊕ · · · ⊕ 𝐿𝑁 → 𝐵 by fiberwise symplectic reduction for the action of a subtorus 𝐾 = (𝑆1)𝑘 of
𝑇 = (𝑆1)𝑁 . Let 𝜇 denote the moment map for the action of K on the total space of 𝐿1 ⊕ · · · ⊕ 𝐿𝑁 → 𝐵
so that 𝐸 = 𝜇−1(𝜔)/𝐾 . The quotient map 𝜇−1(𝜔) → 𝐸 exhibits 𝜇−1 (𝜔) as a principal K-bundle over E.
Since 𝐾 = (𝑆1)𝑘 , this defines k tautological 𝑆1-bundles over E, each of which carries an action of T. Let
𝑃1, . . . , 𝑃𝑘 ∈ 𝐻2

𝑇 (𝐸 ;Z) be the T-equivariant first Chern classes of the corresponding antitautological
bundles, and let 𝑝1, . . . , 𝑝𝑘 be the restrictions of 𝑃1, . . . , 𝑃𝑘 to the fiber X. Without loss of generality,
by changing the identification of K with (𝑆1)𝑘 if necessary, we may assume that the classes 𝑝1, . . . , 𝑝𝑘
are ample. The classes 𝑝1, . . . , 𝑝𝑘 generate the T-equivariant cohomology algebra 𝐻•

𝑇 (𝑋); let

Δ𝛽 (𝑝1, . . . , 𝑝𝑘 ) (28)

be monomials in 𝑝1, . . . , 𝑝𝑘 , indexed by 𝛽, that together form a basis for 𝐻•
𝑇 (𝑋).

Let 𝜆1, . . . , 𝜆𝑁 denote the first Chern classes of the N antitautological bundles on 𝐵𝑇 = (C𝑃∞)𝑁 so
that 𝑅𝑇 := 𝐻•

𝑇 ({point};Q) = Q[𝜆1, . . . , 𝜆𝑁 ]. The T-equivariant cohomology algebra 𝐻•
𝑇 (𝐸) has basis

Δ𝛽 (𝑃1, . . . , 𝑃𝑘 ) over 𝐻•(𝐵) ⊗ 𝑅𝑇 (cf. [27]). Let Λ 𝑗 denote the first Chern class of the dual bundle 𝐿∨
𝑗

so that the T-equivariant first Chern class of 𝐿 𝑗 is −Λ 𝑗 − 𝜆 𝑗 , and define

𝑢 𝑗 =
𝑘∑
𝑖=1

𝑚𝑖 𝑗 𝑝𝑖 − 𝜆 𝑗 𝑈 𝑗 =
𝑘∑
𝑖=1

𝑚𝑖 𝑗𝑃𝑖 − Λ 𝑗 − 𝜆 𝑗 1 ≤ 𝑗 ≤ 𝑁.

Then 𝑢 𝑗 is the T-equivariant cohomology class Poincaré dual to the jth toric divisor in X, and 𝑈 𝑗 is the
T-equivariant cohomology class Poincaré dual to the jth toric divisor in E.

Let 𝐽𝐵 (𝜏𝐵, 𝑧) denote the J-function of B, and write

𝐽𝐵 (𝜏𝐵, 𝑧) =
∑

𝛽∈Eff (𝐵)
𝐽𝐵𝛽 (𝜏𝐵, 𝑧)𝑄

𝛽
𝐵 .

Here, 𝜏𝐵 ∈ 𝐻•(𝐵), which can be written as 𝜏𝐵 =
∑
𝑏 𝜏𝑏𝜙𝑏 after choosing a basis 𝜙1, . . . , 𝜙rk𝐻 • (𝐵) for

𝐻•(𝐵).
The I-function of E is

𝐼𝐸 (𝑡, 𝜏𝐵, 𝑧) := 𝑒𝑃𝑡/𝑧
∑
𝑑∈Z𝑘

∑
𝛽∈Eff (𝐵)

𝐽𝐵𝛽 (𝜏𝐵, 𝑧)𝑄
𝛽
𝐵𝑞
𝑑𝑒𝑑𝑡

𝑁∏
𝑗=1

∏0
𝑚=−∞(𝑈 𝑗 + 𝑚𝑧)∏𝑈 𝑗 (𝑑,𝛽)
𝑚=−∞ (𝑈 𝑗 + 𝑚𝑧)

, (29)

where

𝑡 := (𝑡1, . . . , 𝑡𝑘 ) 𝑑 = (𝑑1, . . . , 𝑑𝑘 ) 𝑃𝑡 :=
𝑘∑
𝑖=1

𝑃𝑖𝑡𝑖

𝑑𝑡 :=
𝑘∑
𝑖=1

𝑑𝑖𝑡𝑖 𝑞𝑑 := 𝑞𝑑1
1 · · · 𝑞𝑑𝑘𝑘 𝑈 𝑗 (𝑑, 𝛽) :=

𝑘∑
𝑖=1

𝑑𝑖𝑚𝑖 𝑗 −
∫
𝛽
Λ 𝑗 .
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We have that

𝐼𝐸 (𝑡, 𝜏𝐵, 𝑧) = 𝑧𝑒𝑃𝑡/𝑧𝑒𝜏𝐵/𝑧 + O(𝑄). (30)

Brown proves [4, Theorem 1] that 𝐼𝐸 (𝑡, 𝜏𝐵,−𝑧) lies on the Lagrangian cone L𝐸 defined by the
T-equivariant Gromov–Witten theory of E.

Recall the monomials Δ𝛽 defined in Equation (28). The classes

Δ𝛽 (𝑃1, . . . , 𝑃𝑘 )𝜙𝑏, (31)

where {𝜙𝑏} is a basis for 𝐻•(𝐵), form a basis for 𝐻•
𝑇 (𝐸), and this basis has a well-defined nonequivariant

limit. Elements of this basis are indexed by pairs (𝛽, 𝑏). Denote by T the following matrix whose column
vectors are also indexed by pairs (𝛽, 𝑏):

𝑇 (𝑧) =
[
Δ𝛽

(
𝑧 𝜕𝜕𝑡1 , . . . , 𝑧

𝜕
𝜕𝑡𝑘

)
𝜕𝜙𝑏 𝐼𝐸 (𝑡, 𝜏𝐵, 𝑧)

]
. (32)

More precisely, the column of 𝑇 (𝑧) corresponding to the pair (𝛽, 𝑏) is Δ𝛽
(
𝑧 𝜕𝜕𝑡1 , . . . , 𝑧

𝜕
𝜕𝑡𝑘

)
𝜕𝜙𝑏 𝐼𝐸 (𝑡, 𝜏𝐵, 𝑧).

The columns of𝑇 (−𝑧) form a basis for𝑇𝐼 (𝑡 ,𝜏𝐵 ,−𝑧)L𝐸 over the ring Ξ{𝑧} of power series in 𝑞1, . . . , 𝑞𝑘
and Novikov variables of B with coefficients which are polynomials of z: See Equation (30). For an
appropriate value of 𝜏, determined by t and 𝜏𝐵, the columns of 𝑆𝐸 (𝜏,−𝑧)∗ form another such basis,
which consists of series in 𝑧−1. Expressing the columns of T in terms of columns of S yields

𝑇 (−𝑧) = 𝑆𝐸 (𝜏,−𝑧)∗𝐿(𝜏, 𝑧),

where L is a matrix with entries inΞ{𝑧}; this is the Birkhoff factorization of T. Since all other ingredients
in this identity admit a nonequivariant limit, 𝐿(𝜏, 𝑧) does too.

The products ∏0
𝑚=−∞(𝑈 𝑗 + 𝑚𝑧)∏𝑈 𝑗 (𝑑,𝛽)
𝑚=−∞ (𝑈 𝑗 + 𝑚𝑧)

that occur in Equation (29), and thus in Equation (32), are rational functions of z. When 𝜆 𝑗 ≠ 0 for
each j, we expand these as Laurent series near 𝑧 = 0. We saw in §3.4 that the same operation applied to
𝑆𝐸 (𝜏, 𝑧) yields

𝑆𝐸 (𝜏, 𝑧) = 𝑅(𝜏, 𝑧)𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏, 𝑧).

Thus,

𝑇 (−𝑧) ∼ 𝑆𝑏𝑙𝑜𝑐𝑘 (𝜏, 𝑧)−1𝑅(𝜏, 𝑧)−1𝐿(𝜏, 𝑧),

where∼ denotes the expansion near 𝑧 = 0. In the next two subsections, we will show that the expansion of
Γ𝑏𝑙𝑜𝑐𝑘 (𝑧) 𝑇 (−𝑧) near 𝑧 = 0 has a nonequivariant limit by identifying this expansion with the stationary
phase expansion of certain oscillating integrals.

4.2. Oscillating integrals

Consider 𝑊 =
∑𝑁
𝑗=1 (𝑥 𝑗 + 𝜆 𝑗 log 𝑥 𝑗 ), and oscillating integrals∫

𝛾
𝑒𝑊 /𝑧

∏𝑁
𝑗=1 𝑑 log 𝑥 𝑗∏𝑘

𝑖=1 𝑑 log(𝑞𝑖𝑒𝑡𝑖 ),
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where 𝛾 is a cycle in the subvariety of (C×)𝑁 defined by

𝑁∏
𝑗=1

𝑥
𝑚𝑖 𝑗

𝑗 = 𝑞𝑖𝑒
𝑡𝑖 1 ≤ 𝑖 ≤ 𝑘 (33)

given by downward gradient flow of �(𝑊/𝑧) from a critical point of W. Such oscillating integrals, over
an appropriate set of cycles 𝛾, together form the mirror to the T-equivariant quantum cohomology of
the toric manifold X [12]. We now relate these integrals to the q-series 𝐼𝐸 (𝑡, 𝜏𝐵, 𝑧) by expanding the
integrand as a q-series, following [4].

Given a T-fixed point 𝛼 on X, one can solve the Equations (33) for 𝑥𝑖 , 𝑖 ∈ 𝛼, in terms of 𝑥 𝑗 , 𝑗 ∉ 𝛼:

𝑥𝑖 =
𝑘∏
𝑙=1

(𝑞𝑙𝑒𝑡𝑙 ) (𝑚
−1
𝛼 )𝑖𝑙

∏
𝑗∉𝛼

𝑥
−(𝑚−1

𝛼 𝑚)𝑖 𝑗
𝑗 𝑖 ∈ 𝛼, (34)

where 𝑚𝛼 is the 𝑘 × 𝑘 submatrix of (𝑚𝑖 𝑗 ) given by taking the columns in 𝛼; this defines a chart on the
toric mirror (33). In this chart, the integrand 𝑒𝑊 /𝑧 becomes

Φ𝛼 :=

(
𝑘∏
𝑖=1

(𝑞𝑖𝑒𝑡𝑖 )𝛼
∗ (𝑝𝑖 )/𝑧

)
𝑒
∑

𝑗∉𝛼 (𝑥 𝑗−𝛼∗ (𝑢 𝑗 ) log 𝑥 𝑗 )/𝑧
∑
𝑑∈Z𝑘 :

𝑢 𝑗 (𝑑) ≥ 0 for 𝑗 ∈ 𝛼

(𝑞1𝑒
𝑡1 )𝑑1 · · · (𝑞𝑘𝑒𝑡𝑘 )𝑑𝑘

∏
𝑗∉𝛼 𝑥

−𝑢 𝑗 (𝑑)
𝑗∏

𝑗∈𝛼 𝑢 𝑗 (𝑑)!𝑧𝑢 𝑗 (𝑑)
,

where 𝑢 𝑗 (𝑑) =
∑𝑘
𝑖=1 𝑑𝑖𝑚𝑖 𝑗 ; cf. the proof of [4, Theorem 3]. Note that 𝑢 𝑗 (𝑑) is the value of the

cohomology class 𝑢 𝑗 ∈ 𝐻2(𝑋) on the element 𝑑 ∈ 𝐻2 (𝑋) such that 𝑝𝑖 (𝑑) = 𝑑𝑖 , and that our ampleness
assumption guarantees that all 𝑑𝑖 are nonnegative. We thus consider

I𝛼 (𝑞𝑒𝑡 , 𝑧, 𝜆) =
∫
(R+) 𝑗∉𝛼

Φ𝛼
∧
𝑗∉𝛼

𝑑 log 𝑥 𝑗

as a q-series of oscillating integrals with phase function
∑
𝑗∉𝛼 (𝑥 𝑗 − 𝛼∗(𝑢 𝑗 ) log 𝑥 𝑗 ) and monomial

amplitudes. Replacing the variables 𝜆 𝑗 by the differential operator 𝜆 𝑗 + 𝑧𝜕Λ 𝑗 , we can consider I𝛼 as an
operator to be applied to the J-function of the base B. According to the computation in [4, Section 5],
this gives(

𝑘∏
𝑖=1

𝑞−𝛼
∗ (𝑃𝑖)/𝑧

𝑖

)
I𝛼 (𝑞𝑒𝑡 , 𝑧, 𝜆 + 𝑧𝜕Λ)𝐽𝐵 (𝜏𝐵, 𝑧) = 𝛼∗𝐼𝐸 (𝑡, 𝜏𝐵, 𝑧)

∏
𝑗∉𝛼

∫ ∞

0
𝑒 (𝑥−𝛼

∗ (𝑈 𝑗 ) log 𝑥)/𝑧𝑑 log 𝑥.

(35)

Applying the differential operators in Equation (32), we get expressions in terms of oscillating integrals
for each entry Δ𝛽

(
𝑧 𝜕𝜕𝑡1 , . . . , 𝑧

𝜕
𝜕𝑡𝑘

)
𝜕𝜙𝑏 𝐼𝐸 of 𝑇 (𝑧). The stationary phase asymptotics of the oscillating

integrals on the right (at the unique critical points 𝑥 = 𝛼∗(𝑈 𝑗 ) of the phase functions) combine to give
(2𝜋𝑧)dimC 𝑋/2Γ𝛼 (𝑧); see [4, Section 5.2]. Consequently,

(
Γ𝑏𝑙𝑜𝑐𝑘 (−𝑧) 𝑇 (𝑧)

)𝛽,𝑏
𝛼

∼
(
𝑘∏
𝑖=1

𝑞−𝛼
∗ (𝑃𝑖)/𝑧

𝑖

)
Δ𝛽

(
𝑧 𝜕𝜕𝑡1 , . . . , 𝑧

𝜕
𝜕𝑡𝑘

)
(2𝜋𝑧) 1

2 dimC 𝑋
I𝛼 (𝑞𝑒𝑡 , 𝑧, 𝜆 + 𝑧𝜕Λ)𝜕𝜙𝑏 𝐽𝐵 (𝜏𝐵, 𝑧), (36)

that is, the expansions near 𝑧 = 0 of the entries of Γ𝑏𝑙𝑜𝑐𝑘 (−𝑧) 𝑇 (𝑧) coincide with stationary phase
asymptotics of the oscillating integrals on the right-hand side of Equation (36). We now show that these
stationary phase asymptotics admit a nonequivariant limit.
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4.3. Stationary phase asymptotics

The expression

Δ𝛽
(
𝑧 𝜕𝜕𝑡1 , . . . , 𝑧

𝜕
𝜕𝑡𝑘

) ∫
𝛾
𝑒𝑊 /𝑧

∏𝑁
𝑗=1 𝑑 log 𝑥 𝑗∏𝑘

𝑖=1 𝑑 log(𝑞𝑖𝑒𝑡𝑖 )
(37)

is an oscillating integral with the phase function
∑𝑁
𝑗=1 (𝑥 𝑗 + 𝜆 𝑗 log 𝑥 𝑗 ) over a Lefschetz thimble 𝛾 in the

complex torus with equations
𝑁∏
𝑗=1

𝑥
𝑚𝑖 𝑗

𝑗 = 𝑞𝑖𝑒
𝑡𝑖 1 ≤ 𝑖 ≤ 𝑘. (38)

In the classical limit 𝑞 → 0, this torus degenerates into a union of coordinate subspaces⋃
𝛼∈𝐹 C

𝑛−𝑘
𝛼 , where C𝑛−𝑘𝛼 is the subspace of C𝑛 given by the equations

𝑥 𝑗 = 0, 𝑗 ∈ 𝛼. The equations for critical points of W under the constraints (38) in the coordinate
chart {𝑥 𝑗 : 𝑗 ∉ 𝛼} take the form

0 = 𝑥 𝑗 − 𝛼∗(𝑢 𝑗 ) + terms involving positive powers of 𝑞 𝑗 ∉ 𝛼.

In the classical limit 𝑞 → 0, exactly one of these critical points approaches the critical point

𝑥 𝑗 = 𝛼∗(𝑢 𝑗 ) 𝑗 ∉ 𝛼 (39)

of the phase function
∑
𝑗∉𝛼 (𝑥 𝑗 − 𝛼∗(𝑢 𝑗 ) log 𝑥 𝑗 ) on C𝑛−𝑘𝛼 . Call this the 𝛼th critical point of W. On the

right-hand side of Equation (36), we first expanded the oscillating integral (37) as a q-series and then
took termwise stationary phase asymptotics at the critical point (39). General properties of oscillating
integrals [4, Corollary 8] guarantee that this coincides with the q-series expansion of the stationary phase
asymptotics of Equation (37) at the 𝛼th critical point of W. The key point here is that, for a generic value
of q, if we let 𝜆 𝑗 → 0 for all j along a generic path, then the critical points of W corresponding to 𝛼 ∈ 𝐹
remain nondegenerate. The stationary phase expansions at these critical points depend continuously
(indeed analytically) on 𝜆, and at 𝜆 = 0 remain well defined.

Arranging the integrals (37) into an |𝐹 | × |𝐹 | matrix and taking stationary phase asymptotics gives( ∞∑
𝑘=0

𝑧𝑘Ψ𝑘

) ⎡⎢⎢⎢⎢⎢⎢⎣
. . . 0

𝑒𝑤𝛼/𝑧

0
. . . ,

⎤⎥⎥⎥⎥⎥⎥⎦
where the factor on the right is a diagonal matrix, 𝑤𝛼 is the value of W at the 𝛼th critical point and
Ψ𝑘 is an |𝐹 | × |𝐹 | matrix. Here, Ψ𝑘 and 𝑤𝛼 depend analytically on (𝑞, 𝑡, 𝜆) and are well defined in
the limit 𝜆 = 0; also Ψ0 is invertible, as a consequence of Δ𝛽 (𝑝1, . . . , 𝑝𝑘 ) forming a basis in 𝐻•

𝑇 (𝑋).
The right-hand side of Equation (36) is obtained by replacing 𝜆 𝑗 here by 𝜆 𝑗 + 𝑧𝜕Λ 𝑗 , and applying the
resulting differential operator to 𝜕𝜙𝑏 𝐽𝐵 (𝜏𝐵, 𝑧).

For a function 𝜆 ↦→ 𝑤(𝜆) on 𝐻2(𝐵) that depends on parameters (such as 𝑞𝑖 and 𝑡𝑖), consider first the
action of 𝑒𝑤 (𝑧𝜕Λ)/𝑧 on 𝐽𝐵 (𝜏𝐵, 𝑧). By the divisor equation, the action of 𝑧𝜕Λ on the J-function 𝐽𝐵 (𝜏𝐵, 𝑧)
coincides with the action of Λ + 𝑧𝑄𝜕𝑄 where 𝑄𝜕𝑄 is the derivation of Novikov variables (for B)
corresponding to Λ ∈ 𝐻2 (𝐵). For each 𝐷 ∈ 𝐻2 (𝐵), we have

𝑒𝑤 (Λ+𝑧𝑄𝜕𝑄)/𝑧𝑄𝐷 = 𝑒𝑤 (Λ+𝑧𝐷)/𝑧𝑄𝐷

and so 𝑒𝑤 (Λ+𝑧𝑄𝜕𝑄)/𝑧 gives a well-defined operation on the space of cohomology-valued Laurent series
in z with coefficients that converge Q-adically, provided that 𝑤(0) = 0. Due to the string equation,

𝑒𝑤 (0)/𝑧𝐽𝐵 (𝜏𝐵, 𝑧) = 𝐽𝐵
(
𝜏𝐵 + 𝑤(0)1, 𝑧

)
.
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On the other hand, 𝑒𝑤 (Λ+𝑧𝑄𝜕𝑄)/𝑧−𝑤 (0)/𝑧𝐽𝐵 (𝜏𝐵, 𝑧), after flipping the sign of z, lies in 𝑧𝑇𝐽𝐵 (𝜏∗ ,−𝑧)L𝐵 ⊂ L𝐵
for some point 𝜏∗ ∈ 𝐻•(𝐵) that depends on w and 𝜏𝐵. This result was first used in [6] in the proof of
the quantum Lefschetz theorem but was proved incorrectly there; an accurate proof is given in [5] and
[16, Theorem 1].

Applying these arguments with 𝑤 = 𝑤𝛼 for each 𝛼 ∈ 𝐹, we obtain

𝑒−𝑤𝛼 (𝑞,𝑡 ,𝜆−𝑧𝜕Λ)/𝑧𝐽𝐵 (𝜏𝐵,−𝑧) ∈ 𝑧𝑇𝐽𝐵 (𝜏∗𝛼 ,−𝑧)L𝐵 ⊂ L𝐵

for certain 𝜏∗𝛼 ∈ 𝐻•(𝐵) depending on (𝑞, 𝑡, 𝜆) and 𝜏𝐵. Differentiating with 𝜕𝜙𝑏 yields a basis, indexed
by b, for𝑇𝐽𝐵 (𝜏∗𝛼 ,−𝑧)L𝐵 as a module over power series in z. These bases together give a basis for the direct
sum ⊕𝛼∈𝐹𝑇𝐽𝐵 (𝜏∗𝛼 ,−𝑧)L𝐵. Note that applying 𝑧𝜕Λ to a family of tangent vectors 𝑣(𝜏∗𝛼) ∈ 𝑇𝐽𝐵 (𝜏∗𝛼 ,−𝑧)L𝐵
– here the family depends on 𝜏𝐵 via 𝜏∗𝛼 – yields another family of tangent vectors in 𝑇𝐽𝐵 (𝜏∗𝛼 ,−𝑧)L𝐵.
Therefore, applying the z-series of matrix-valued differential operators

∑∞
𝑘=0(−𝑧)𝑘Ψ𝑘 (𝑞, 𝑡, 𝜆 − 𝑧𝜕Λ) to

our basis for ⊕𝛼∈𝐹𝑇𝐽𝐵 (𝜏∗𝛼 ,−𝑧)L𝐵 yields another basis for this direct sum. This space, however, has a
standard basis, formed by the columns of 𝑆𝐵 (𝜏∗𝛼, 𝑧)−1, 𝛼 ∈ 𝐹. Expressing our basis in terms of the
standard one, we obtain

( ∞∑
𝑘=0

𝑧𝑘Ψ𝑘 (𝑞, 𝑡, 𝜆 − 𝑧𝜕Λ)
) ⎡⎢⎢⎢⎢⎢⎢⎣

. . . 0
𝑒−𝑤𝛼 (𝑞,𝑡 ,𝜆−𝑧𝜕Λ)/𝑧

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ 𝑆𝐵 (𝜏𝐵, 𝑧)
−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
. . . 0

𝑆𝐵 (𝜏∗𝛼, 𝑧)−1

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ 𝑅
′′(𝑧)−1

(40)

for some invertible matrix-valued z-series 𝑅′′(𝑧) with entries in the Novikov ring of B that depend
analytically on (𝑞, 𝑡, 𝜆). Here, we used the fact that the columns of 𝑆𝐵 (𝜏𝐵, 𝑧)−1 are 𝜕𝜙𝑏 𝐽𝐵 (𝜏𝐵,−𝑧). The
left-hand side of Equation (40) is the expansion near 𝑧 = 0 of Γ𝑏𝑙𝑜𝑐𝑘 (𝑧) 𝑇 (−𝑧), and the right-hand side
provides its analytic extension to the nonequivariant limit 𝜆 = 0. Thus, the expansion near 𝑧 = 0 of
Γ𝑏𝑙𝑜𝑐𝑘 (−𝑧) 𝑇 (𝑧) has a well-defined nonequivariant limit, as claimed.

4.4. Grading

To complete the proof of Theorem 1.4, it remains to show that the loop group operator just defined
respects the gradings. In the nonequivariant limit 𝜆 = 0, all the functions of q, t, Q and 𝜏𝐵 involved
satisfy homogeneity conditions that reflect the natural grading in cohomology theory. To describe these
conditions explicitly, introduce the Euler vector field

E :=
𝑘∑
𝑖=1

𝑐𝑖𝑞𝑖
𝜕

𝜕𝑞𝑖
+
𝑟∑
𝑎=1

𝛿𝑎𝑄𝑎
𝜕

𝜕𝑄𝑎
+

rk𝐻 • (𝐵)∑
𝑏=1

(
1 − deg(𝜙𝑏)

2

)
𝜏𝑏

𝜕

𝜕𝜏𝑏
.

Here, 𝑐𝑖 and 𝛿𝑎 are the coefficients of the first Chern class of E with respect to an appropriate basis:

𝑐1 (𝐸) =
𝑁∑
𝑗=1

𝑈 𝑗 + 𝜋∗𝑐1 (𝐵) =
𝑘∑
𝑖=1

���
𝑁∑
𝑗=1

𝑚𝑖 𝑗
	
� 𝑃𝑖 + 𝜋∗

���𝑐1 (𝐵) −
𝑁∑
𝑗=1

Λ 𝑗
	
� =

𝑘∑
𝑖=1

𝑐𝑖𝑃𝑖 +
𝑟∑
𝑎=1

𝛿𝑎𝜋
∗𝜙𝑎,

where we have chosen our basis 𝜙1, . . . , 𝜙rk𝐻 • (𝐵) for 𝐻•(𝐵) such that 𝜙1, . . . , 𝜙𝑟 is a basis for 𝐻2(𝐵).
In what follows, we abuse notations and use the same notation to denote both an equivariant object

and its nonequivariant limit. Let 𝜇𝐸 denote the Hodge grading operator for E. That is, in a homogeneous
basis of 𝐻•(𝐸), 𝜇𝐸 is the diagonal matrix whose diagonal entries are half-integers expressing the
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degrees of the basis elements measured relative to the middle (complex) dimension of the target

𝜇𝐸
(
Δ𝛽 (𝑃) ⊗ 𝜋∗𝜙𝑏

)
=

degΔ𝛽 + deg𝜙𝑏 − dimC𝐸
2

(
Δ𝛽 (𝑃) ⊗ 𝜋∗𝜙𝑏

)
.

Lemma 4.1. In its nonequivariant limit the matrix T, defined in Equation (32), satisfies the grading
condition (

𝑧
𝑑

𝑑𝑧
+ E

)
𝑇 (−𝑧) = 𝑇 (−𝑧)𝜇𝐸 − 𝜇𝐸𝑇 (−𝑧), (41)

where 𝜇𝐸 is the Hodge grading operator for E.

Proof. Recall from Equation (29) that 𝐼𝐸 is a homogeneous expression of overall degree 1 that takes
values in the cohomology of E. Its components, in the graded basis Δ𝛽 (𝑃) ⊗ 𝜋∗𝜙𝑏 , have degrees
1 − degΔ𝛽/2 − deg 𝜙𝑏/2 as functions of the variables 𝑧, 𝑡, 𝜏, 𝑞, 𝑄. The columns of the matrix T – see
Equation (32) – are obtained from 𝐼𝐸 by applying the differential operators Δ𝛽 (𝑧 𝜕𝜕𝑡 )𝜕𝜙𝑏 ; these increase
the degree by degΔ𝛽/2 + deg 𝜙𝑏/2− 1. The commutator 𝑇 (−𝑧)𝜇𝐸 − 𝜇𝐸𝑇 (−𝑧) on the right of Equation
(41) simply multiplies each matrix entry of T by the difference of the column and row degrees, that is,
by the degree of the matrix entry as a homogeneous function of the variables 𝑧, 𝑡, 𝜏, 𝑞, 𝑄. It equals the
eigenvalue of this homogeneous function considered as an eigenvector of the Euler operator 𝑧 𝑑𝑑𝑧 + E on
the left-hand side of Equation (41). �

We can rewrite the grading condition (41) using the divisor equations

𝑞𝑖
𝜕

𝜕𝑞𝑖
𝑇 (−𝑧) =

(
𝜕

𝜕𝑡𝑖
+ 𝑃𝑖

𝑧

)
𝑇 (−𝑧) and 𝑄𝑎

𝜕

𝜕𝑄𝑎
𝑇 (−𝑧) =

(
𝜕

𝜕𝜏𝑎
+ 𝜙𝑎

𝑧

)
𝑇 (−𝑧)

to replace E with 𝜕E + 𝑐1 (𝐸)/𝑧, where

𝜕E =
𝑘∑
𝑖=1

𝑐𝑖
𝜕

𝜕𝑡𝑖
+
𝑟∑
𝑎=1

𝛿𝑎
𝜕

𝜕𝜏𝑎
+

rk𝐻 • (𝐵)∑
𝑏=1

(
1 − deg(𝜙𝑏)

2

)
𝜏𝑏

𝜕

𝜕𝜏𝑏
.

From the nonequivariant version of the quantum differential equation (10) for 𝑆𝐸 , we see that 𝑇 (−𝑧) =
𝑆𝐸 (𝑧)−1𝐿(𝑧) satisfies the ordinary differential equation (ODE)

−𝑧𝜕E𝑇 (−𝑧) = 𝑇 (−𝑧)E (𝑧), where E (𝑧) = 𝐿−1 (𝑧) (𝜕E•)𝐿(𝑧) − 𝑧𝐿−1(𝑧)𝜕E𝐿(𝑧)

is regarded as a power series in z. Thus, considering T as an operator, we have(
𝑧
𝑑

𝑑𝑧
+ 𝜇𝐸 + 𝑐1 (𝐸)

𝑧

)
𝑇 (−𝑧) = 𝑇 (−𝑧)

(
𝑧
𝑑

𝑑𝑧
+ 𝜇𝐸 + E (𝑧)

𝑧

)
. (42)

On the other hand, the matrix I of oscillating integrals, whose stationary phase asymptotics yield
Equation (40), in the nonequivariant limit assumes the form

I (−𝑧) :=
⊕
𝛼∈𝐹

⎡⎢⎢⎢⎢⎢⎣
Δ𝛽

(
−𝑧 𝜕𝜕𝑡1 , . . . ,−𝑧

𝜕
𝜕𝑡𝑘

)
(−2𝜋𝑧) 1

2 dimC 𝑋

∫
𝛾𝛼

𝑒−
∑

𝑗 𝑥 𝑗/𝑧
∏
𝑗

𝑥
𝜕Λ 𝑗

𝑗

∏
𝑗 𝑑 log 𝑥 𝑗∏

𝑖 𝑑 log(𝑞𝑖𝑒𝑡𝑖 )

⎤⎥⎥⎥⎥⎥⎦ 𝑆𝐵 (𝜏𝐵, 𝑧)
−1.

Here, columns of I are indexed by pairs (𝛽, 𝑏) that correspond to elements of the basis {Δ𝛽 (𝑃) ⊗ 𝜋∗𝜙𝑏}
for 𝐻•(𝐸), while the rows are indexed by pairs (𝛼, 𝑎) where 𝛼 determines the integration cycle 𝛾𝛼 and
𝜙𝑎 is an element of the basis for 𝐻•(𝐵). Note that a and b are row and column indices in the matrix 𝑆−1

𝐵 .
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Lemma 4.2. In its nonequivariant limit, the matrix I satisfies the grading condition(
𝑧
𝑑

𝑑𝑧
+ 𝜕E + 𝑐1(𝐵)

𝑧

)
I (−𝑧) = I (−𝑧)𝜇𝐸 − 𝜇𝐵I (−𝑧). (43)

Proof. The Hodge grading operator 𝜇𝐸 on the right is decomposed as 𝜇𝑋 + 𝜇𝐵 (or, more precisely, as
𝜇𝑋 ⊗ 1 + 1 ⊗ 𝜇𝐵 in the basis Δ𝛽 (𝑃) ⊗ 𝜋∗𝜙𝑏 of 𝐻•(𝐸) indexing columns of I), and the part I (−𝑧)𝜇𝑋
arises here from the degrees of the operators Δ𝛽 (−𝑧𝜕/𝜕𝑡)/(−2𝜋𝑧) 1

2 dimC 𝑋 with respect to 𝑧 𝑑𝑑𝑧 .
We examine now how 𝑧 𝑑𝑑𝑧 + 𝜕E + 𝑐1 (𝐵)

𝑧 acts on the integral in the definition of I (−𝑧). Since the
Lie derivative of a closed form is exact, to differentiate an integral along a vector field it suffices
to differentiate the integrand along a lift of the vector field to the domain of integration. The vector
field

∑
𝑖 𝑐𝑖𝜕/𝜕𝑡𝑖 lifts along the projection (33) to the Euler operator 𝐸𝑢 :=

∑
𝑗 𝑥 𝑗𝜕/𝜕𝑥 𝑗 . The latter acts

trivially on 𝑆−1
𝐵 but satisfies 𝐸𝑢

∏
𝑗 𝑥
𝜕Λ 𝑗

𝑗 =
∏
𝑗 𝑥
𝜕Λ 𝑗

𝑗 (𝐸𝑢+
∑
𝑗 𝜕Λ 𝑗 ). Since

∑
𝑎 𝛿𝑎𝜕/𝜕𝜏𝑎+

∑
𝑗 𝜕Λ 𝑗 = 𝜕𝑐1 (𝐵) ,

the action of 𝑧 𝑑𝑑𝑧 + 𝜕E + 𝑐1 (𝐵)
𝑧 on the integral in I (−𝑧) amounts to applying 𝑧 𝑑𝑑𝑧 + 𝜕𝑐1 (𝐵) +

𝑐1 (𝐵)
𝑧 +∑

𝑏

(
1 − deg(𝜙𝑏)

2

)
𝜏𝑏

𝜕
𝜕𝜏𝑏

to 𝑆−1
𝐵 instead.

It remains to refer to the grading condition for 𝑆−1
𝐵 which, taking into account the divisor equations

𝑄𝑎𝜕/𝜕𝑄𝑎𝑆−1
𝐵 = (𝜕/𝜕𝜏𝑎 + 𝜙𝑎/𝑧)𝑆−1

𝐵 , 𝑎 = 1, . . . , rk 𝐻2(𝐵), assumes the form(
𝑧
𝑑

𝑑𝑧
+ 𝜕𝑐1 (𝐵) +

𝑐1(𝐵)
𝑧

+
∑
𝑏

(
1 − deg(𝜙𝑏)

2

)
𝜏𝑏

𝜕

𝜕𝜏𝑏

)
𝑆−1
𝐵 = 𝑆−1

𝐵 𝜇𝐵 − 𝜇𝐵𝑆
−1
𝐵 .

See [13, Section 8]. Altogether, we obtain(
𝑧
𝑑

𝑑𝑧
+ 𝜕E + 𝑐1 (𝐵)

𝑧

)
I (−𝑧) = I (−𝑧)𝜇𝑋 + I (−𝑧)𝜇𝐵 − 𝜇𝐵I (−𝑧)

as promised. �

As a function of (𝑡, 𝜏𝐵), I satisfies the same differential equations as T, since even before taking
the nonequivariant limit I and T differ only by Γ-function factors that are independent of t and 𝜏𝐵. In
particular,

−𝑧𝜕EI (−𝑧) = I (−𝑧)E (𝑧).

Considering I (−𝑧) as an operator, we thus arrive at the following commutation relation:

I (−𝑧)−1
(
𝑧
𝑑

𝑑𝑧
+ 𝜇𝐵 + 𝑐1 (𝐵)

𝑧

)
=

(
𝑧
𝑑

𝑑𝑧
+ 𝜇𝐸 + E (𝑧)

𝑧

)
I (−𝑧)−1. (44)

Our previous results equate D𝐸 , up to a constant factor, with

𝑆−1
𝐸 �̂� 𝑅′

( �⊕𝛼𝑆𝐵 (𝜏∗𝛼)) D⊗ |𝐹 |
𝐵 .

Here, 𝑆−1
𝐸 (𝑧)𝐿(𝑧) coincides with 𝑇 (−𝑧), and 𝑅′(𝑧)

(
⊕𝛼𝑆𝐵 (𝜏∗𝛼, 𝑧)

)
is the matrix inverse to the stationary

phase asymptotics of I (−𝑧). Note that the values of the arguments 𝜏 and 𝜏∗𝛼 in 𝑆−1
𝐸 and 𝑆𝐵 are determined

by certain mirror maps and cannot be described here explicitly. Nevertheless the complicated relationship
between them holds automatically, because all ingredients of the formula were constructed from the
same function 𝐼𝐸 . Now, the commutation relations (42) and (44) show that commuting the Virasoro
grading operator 𝑙0 (𝐸) = 𝑧𝑑/𝑑𝑧 + 1/2 + 𝜇𝐸 + 𝑐1 (𝐸)/𝑧 first across 𝑇 (−𝑧) and then across the matrix
inverse of the stationary phase asymptotics of I (−𝑧) yields 𝑙0(𝐵) = 𝑧𝑑/𝑑𝑧 + 1/2 + 𝜇𝐵 + 𝑐1 (𝐵)/𝑧, the
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Virasoro grading operator for B. Thus, the loop group transformation that relates D⊗ |𝐹 |
𝐵 and D𝐸 is

grading preserving, as claimed.

Acknowledgments. We thank the referee for many valuable comments and suggestions. Coates thanks the University of California
at Berkeley for hospitality during the writing of this paper. Givental thanks the Center for Geometry and Physics of the IBS at
Pohang, Korea, and the center’s director, Yong-Geun Oh, for hospitality and support. Special thanks are due to Jeff Brown, who
was a part of this project since its inception and even wrote the first draft of this paper but later chose to withdraw from our team.

Competing Interest. The authors have no competing interest to declare.

Financial Support. Coates was supported in part by a Royal Society University Research Fellowship, ERC Starting Investigator
Grant number 240123, ERC Consolidator Grant 682603 and the Leverhulme Trust. Givental was supported by NSF grants DMS-
0604705, DMS-1007164, DMS-1611839 and DMS-1906326. Tseng was supported in part by a Simons Foundation Collaboration
Grant.

References

[1] M. Audin, Torus Actions on Symplectic Manifolds, revised edn., Progress in Mathematics, vol. 93 (Birkhäuser Verlag, Basel,
2004).

[2] K. Behrend and B. Fantechi. The intrinsic normal cone. Invent. Math., 128(1): 45–88, 1997.
[3] A. Bertram, I. Ciocan-Fontanine and B. Kim, ‘Two proofs of a conjecture of Hori and Vafa’, Duke Math. J. 126(1) (2005),

101–136.
[4] J. Brown, ‘Gromov–Witten invariants of toric fibrations’, Int. Math. Res. Not. IMRN (19) (2014), 5437–5482.
[5] T. Coates, A. Corti, H. Iritani and Hsian-Hua Tseng, ‘Computing genus-zero twisted Gromov–Witten invariants’, Duke

Math. J. 147(3) (2009), 377–438.
[6] T. Coates and A. Givental, ‘Quantum Riemann–Roch, Lefschetz and Serre’, Ann. of Math. (2) 165(1) (2007), 15–53.
[7] R. Dijkgraaf and E. Witten, ‘Mean field theory, topological field theory, and multi-matrix models’, Nuclear Phys. B 342(3)

(1990), 486–522.
[8] T. Eguchi, K. Hori and C.-S. Xiong, ‘Quantum cohomology and Virasoro algebra’, Phys. Lett. B 402(1-2) (1997), 71–80.
[9] T. Eguchi, M. Jinzenji and C.-S. Xiong, ‘Quantum cohomology and free-field representation’, Nuclear Physics B 510(3)

(1998), 608–622.
[10] E. Getzler, ‘The Virasoro conjecture for Gromov-Witten invariants’, in Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998),

Contemp. Math., vol. 241 (Amer. Math. Soc., Providence, RI, 1999), 147–176.
[11] E. Getzler, ‘The jet-space of a Frobenius manifold and higher-genus Gromov–Witten invariants’, in Frobenius manifolds,

Aspects Math., E36, (Vieweg, Wiesbaden, 2004), 45–89.
[12] A. Givental, ‘A mirror theorem for toric complete intersections’, in Topological Field Theory, Primitive Forms and Related

Topics (Kyoto, 1996), Progr. Math., vol. 160 (Birkhäuser Boston, Boston, MA, 1998), 141–175.
[13] A. Givental, ‘Gromov–Witten invariants and quantization of quadratic Hamiltonians’, Mosc. Math. J. 1(4) (2001), 551–568,

645. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary.
[14] A. Givental, ‘Semisimple Frobenius structures at higher genus’, Internat. Math. Res. Notices (23) (2001), 1265–1286.
[15] A. Givental, ‘Symplectic geometry of Frobenius structures’, in Frobenius Manifolds, Aspects Math., E36 (Friedr. Vieweg,

Wiesbaden, 2004), 91–112.
[16] A. Givental, ‘Explicit reconstruction in quantum cohomology and 𝐾 -theory’, Ann. Fac. Sci. Toulouse Math. (6) 25(2–3)

(2016), 419–432.
[17] T. Graber and R. Pandharipande, ‘Localization of virtual classes’, Invent. Math. 135(2) (1999), 487–518.
[18] H. Iritani, ‘Convergence of quantum cohomology by quantum Lefschetz’, J. Reine Angew. Math. 610 (2007), 29–69.
[19] D. Joe and B. Kim, ‘Equivariant mirrors and the Virasoro conjecture for flag manifolds’, Int. Math. Res. Not. (15) (2003),

859–882.
[20] M. Kontsevich and Y. Manin, ‘Gromov–Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math.

Phys. 164(3) (1994), 525–562.
[21] M. Kontsevich and Y. Manin, ‘Relations between the correlators of the topological sigma-model coupled to gravity’, Comm.

Math. Phys. 196(2) (1998), 385–398.
[22] M. Kontsevich, ‘Intersection theory on the moduli space of curves and the matrix Airy function’, Comm. Math. Phys.

147( 1) (1992), 1–23.
[23] M. Kontsevich, ‘Enumeration of rational curves via torus actions’, in The Moduli Space of Curves (Texel Island, 1994),

Progr. Math., vol. 129 (Birkhäuser Boston, Boston, MA, 1995), 335–368.
[24] J. Li and G. Tian, ‘Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties’, J. Amer. Math. Soc. 11(1)

(1998), 119–174.
[25] X. Liu and G. Tian, ‘Virasoro constraints for quantum cohomology’, J. Differential Geom. 50(3) (1998), 537–590.
[26] A. Okounkov and R. Pandharipande, ‘Virasoro constraints for target curves’, Invent. Math. 163(1) (2006), 47–108.

https://doi.org/10.1017/fmp.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.2


28 Tom Coates et al.

[27] P. Sankaran and V. Uma, ‘Cohomology of toric bundles’, Comment. Math. Helv. 78(3) (2003), 540–554. Errata: Comment.
Math. Helv. 79(4) (2004), 840–841.

[28] C. Teleman, ‘The structure of 2D semi-simple field theories’, Invent. Math. 188(3) (2012), 525–588.
[29] E. Witten, ‘Two-dimensional gravity and intersection theory on moduli space’, in Surveys in Differential Geometry

(Cambridge, MA, 1990) (Lehigh Univ., Bethlehem, PA, 1991), 243–310.

https://doi.org/10.1017/fmp.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.2

	1 Introduction
	1.1 Genus-zero Gromov–Witten theory
	1.2 Grading
	1.3 Virasoro constraints in genus zero
	1.4 Virasoro constraints in higher genus
	1.5 Loop group covariance
	1.6 Toric bundles

	2 The proof of Theorem 1.4
	2.1 Descendant-ancestor correspondence
	2.2 Fixed-point localization
	2.3 Why does the limit exist?

	3 Fixed-point localization
	3.1 The T-action on E
	3.2 The T-action on the moduli space of stable maps
	3.3 Virtual localization
	3.4 Virtual localization in genus zero
	3.5 Virtual Localization for the ancestor potential

	4 The nonequivariant limit
	4.1 The I-function of E
	4.2 Oscillating integrals
	4.3 Stationary phase asymptotics
	4.4 Grading


