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The paper examines the singularity theory of Lagrangian manifolds and its connection with variational calculus, 

classification of Coxeter groups, and symplectic topology. We consider the application of the theory to the problem of 

going past an obstacle, to partial differential equations, and to the analysis of singularities of ray systems. 

INTRODUCTION 

The notion of Lagrangian manifold plays a central role in all applications of symplectic geometry -- in variational 

calculus and classical mechanics, in representation theory and quantization, in the theory of hyperbolic differential equations and 

the geometry of spaces with singularities. 

A Lagrangian manifold, by definition, is a submanifold of medium dimension in a symplectic manifold on which a 

symplectic structure (i.e., a closed nondegenerate differential 2-form) identically vanishes. A basic example of a symplectic 

manifold is the tangent fibration T*B with canonical symplectic structure (see [1, p. 171]). The graph of the differential of a 

function on B is a Lagrangian section in T*B. This example is the basis of Weinstein's definition of generalized function as an 

arbitrary Lagrangian submanifold in T*B [44]: it can be considered as the graph of the differential of a (generally) multivalued 

function on B. This is indeed the approach that we adopt in our paper. 

Multivalued functions naturally arise in variational calculus as solutions of the Hamilton--Jacobi equations. The solution 

of the Cauchy problem for the ttamilton--Jacobi equation, while locally single-valued, becomes many-valued under analytic 

continuation. The branching points form a caustic -- the envelope of the corresponding bundle of extremals of the variational 

problem. 

Systematic analysis of singularities of Lagrangian maps, i.e., projections of Lagrangian submanifolds in T*B to the base 

of the Lagrangian fibration T*B --, B, was begun by Arnol'd [2] in 1972. For example, the description of the multivaluedness of 

the distance function from a Riemannian manifold B to a given submanifold is reducible to such a problem. One of the results 

of [2] is the discovery that singularities of Lagrangian maps of nonsingular manifolds are classified by the degenerations of the 

critical points of functions and that the discrete part of their classification -- the so-called simple singularities -- naturally fits in 

the list of the crystallographic Coxeter groups. 

In 1978, following the work on singularities of distance functions to submanifolds with an edge [3], Arnol'd extended the 

list of simple singularities by adding other crystallographic groups. Simple singularities corresponding to the noncrystallographic 

groups I2(5), H3, H 4 were subsequently encountered in the problem of going past an obstacle (see [8, 31, 32]), although other 

simple singularities were also discovered. Thus, almost all irreducible Coxeter groups (except the symmetry group of regular n- 

gons with n >_ 6) were fou,td to be connected with simple singularities in different variational problems. This connection of 

variational calculus with regular polygons remains a puzzle, despite the following theorem that we prove below. 

THEOREM (see Sec. 9). In the class of Lagrangian manifolds locally diffeomorphic to the Cartesian product of plane 

curves, simple singularities of multivalued functions are in one-to-one correspondence with finite irreducible Coxeter groups. 

Specifically, the germ of a multivalued function is simple if and only if its graph is locally diffeomorphic to the discriminant of 

one of these groups or to the product of the discriminant and a nonsingular manifold. 
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The Lagrangian manifolds in this theorem in general have singularities. In Chap. 1 we construct a general theory of 

singular Lagrangian manifolds and their Lagrangian maps. Section 1 proves an analog of Darboux's theorem, and See. 3 presents 

a stability criterion of Lagrangian maps. The property of infinitesimal versality of a family of functions can be stated in terms of 

the Lagrangian map generated by this family. In this form, the property is carried over to the Lagrangian maps of a singular 

manifold, adding a necessary and sufficient condition of their stability. The basic geometrical properties of bifurcation diagrams 

are preserved in this more general setting (see Sec. 4). 

The interest in singular Lagrangian manifolds is attributable primarily to their occurrence in problems of going past an 

obstacle, i.e., in the analysis of singularities of the distance function on a Riemannian manifold with an edge (Sec. 6). Thus, the 

rays tangent to the edge on the Euclidean plane form the bundle of extremals in this problem. Therefore the system of rays is 

the Lagrangian curve projectively dual to the edge. The inflection points of the edge correspond to semicubic cusp points of the 

ray system. This example is the beginning of the series of singularities of Lagrangian manifolds that we cali open swallowtails 

(5.1). They have an important property of universality in relation to the Whitney projections of integral manifolds (see Sec. 8) 

and occur in many problems, not necessarily as Lagrangian manifolds (see 5.2, 8, 11, and also [5, 26, 30]). In Sec. 10 we deter- 

mine all the simple singularities of Lagrangian maps of open swallowtails. The list of the corresponding multivalued functions 

coincides with the list of singularities discovered by Shcherbak in the problem of going past an obstacle [32]. 

A complete classification of stable singularities of Lagrangian maps in any variational problem includes a classification 

of the critical points of functions, and is therefore intractable. However, the accumulated experience shows that the singularities 

of the mapped Lagrangian manifolds occurring in this variational problem are explicitly enumerable. The technique developed in 

this paper (Sec. 3) in principle makes it possible, for given singularities of Lagrangian manifolds, to advance as far as desired 

with the classification of their Lagrangian maps (insofar as this is feasible for the classification of singularities of functions). 

In Sec. 11 we again apply this technique to study the simplest singularities of the isotropic maps R n ~ T*R n. In 11.4 we 

describe the contribution of these singularities to the topology of closed Lagrangian surfaces (n = 2). The connections of 

symplectic topology with singularity theory are also considered in Sec. 2, which formulates a local version of the problem of 

Lagrangian self-intersections. 

For the sake of simplicity, all objects and morphisms considered in the body of the paper are assumed real analytic or 

complex analytic. In fact, all real analytic results remain aiso valid in the C~-category. Append;~x 2 explains how to accomplish 

this extension. 

I would like to acknowledge the help of the following colleagues which, in various forms, I found w~ry useful: V. L 

Arnol'd, A. N. Varchenko, A. M. Gabrielov, V. M. Zakalyukin, V. P. Kostov, S. K. Lando, V. V. Lychagin, D. B. Fuks, V. M. 

Kharlamov, and O. P. Shcherbak. 

Chapter 1: GENERAL THEORY 

1. RELATIVE DARBOUX THEOREMS 

We extend the classes of Lagrangian and Legendrian manifolds to include singular manifolds. 

Definition. A Lagrangian (Legendrian) manifold is an analytic subset of the symplectic (contact) manifold which in the 

neighborhood of each of its nonsingular points is a Lagrangian (Legendrian) submanifold in the ordinary sense. 

In particular, a Lagrangian (Legendrian) manifold is of the same dimension at all its nonsingular points and the set of 

these points is dense in the manifold. When we say that a differential form vanishes on a singular manifold or that a vector field 

is tangent to a singular manifold, we mean that this is so at all nonsingular points. 

Let A be an analytic subset in the manifold M. The differential forms on M that vanish on A form a subcomplex in the 

de Rham complex of the manifold M. 

The factor-complex (f2*(A), d) will be called de Rham complex and its cohomology spaces H*(A) will be called de Rham 

cohomology spaces of the subset A. 

In our applications, conditions of the form Hi(A) = 0 will be checked using the following lemma due to Poincar6. 

Poincard Lemma. The de Rham complex of a quasihomogeneous analytic set with positive weights is acyclic. 
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Proof. Let E be the Euler field of  quasihomogeneous stretchings in the space M tangent to the analytic subset A, a a k- 

form in M closed on A, =-~--X =s its decomposition into quasihomogeneous terms, 6 =  2~ tZs/S �9 Then a = diFj5 in the 
s>O S>O 

complex Q*(A). This follows from Cartan's formula sc~ s-~- Le<z s--~ i~d~z s + di~o~ s and the equalities das I A = 0, which hold for 

all s. 

Remark  1. Positive quasihomogeneity should be regarded as an analytic analog of contractibility of the set A. It can be 

shown (see Sec. 2) that positive quasihomogeneity (in appropriate coordinates) of a germ of a plane curve is equivalent to 

acyclicity of its de Rham complex. On the other hand, any germ of a plane holomorphic curve is contractible in the homotopic 

sense [11]. 

Let A be a Lagrangian manifold in the symplectic space M (=C  2n or R2n). The class [a] ~ HI(A) is well defined by the 

symplectic 2-form co = da and is called its characteristic class. 

Fix the pair (M, A), where A is an analytic subset in M. The symplectic structures in M relative to which A is a Lagran- 

gian manifold will be called equivalent if one is carried to another by a diffeomorphism M that preserves A. 

The characteristic class of  a symplectic form is obviously an invariant of the form's equivalence class. 

We will use the following stability terminology. A germ is called stable if its representative is locally equivalent to any 

small perturbation. We do not require that this equivalence preserve the application point of the germ. However, two germs are 

called equivalent if there exists an equivalence of their representatives that carries one application point into another. In 

particular, a germ close to a stable germ is not necessarily equivalent tO the latter. 

THEOREM 1. A germ of a symplectic structure in M relative to which A C M is a Lagrangian manifold is stable in its 

characteristic class. 

Proof. We will prove that two close germs COo, oJ 1 of symplectic structures on M that vanish on A and have the same 

characteristic class are mapped to one another by a germ of a diffeomorphism that is close to the identity diffeomorphism and 

preserves A. Consider the family co, = (l--t)~00 + t o  x, 0 ~ t~< 1 of  germs of  symplectic structures. We seek a family gt of germs 

of diffeomorphisms that take a~ t to o~0: g**o~,----to0, go = id, g t A = A .  Differentiating, we obtain the equivalent equation 

L v t o t  + oJ1 - -  %----0, (1) 

where V t is the velocity field of the diffeomorphisms gt. Since the characteristic classes of oJ o and co 1 coincide, then co 0 - oJ 1 = 

da, where ct [ A = O. Therefore (1) follows from 

iv,ot=~. (2) 

LEMMA. The map V ~ ivro is an isomorphism of the space of vector fields tangent to the Lagrangian manifold 

A C (M, oJ) to the space of  1-forms vanishing on A. 

This obvious lemma implies unique solvability of  Eq. (2) in the class of  vector fields tangent to A. 

THEOREM 1'. A germ of a contact structure in N relative to which A C N is Legendrian is stable in the class of such 

contact structures. 

The proof uses the symplectization functor (see [10]). The symplectization of the contact manifold N is a symplectic 

manifold M whose points are nonzero covectors on N that vanish on the hyperplane of the contact field at the application point 

of the covector. The projection n: M --, N associating an application point to a covector is a one-dimensional fibration. The 

fibers are the orbits of the action of the group G of nonzero scalars defined by multiplication of a covector by a number. The 1- 

form c~ taking the value p@r.v), p E Tn(p) N, on the vector v E TpM is canonically defined on M. The symplectic structure 

e9 - da is homogeneous of taegree 1 relative to the action of the group G, and together with this action it defines a contact 

structure on N = M/G. The contact geometry on N is transformed by symplectization into a G-homogeneous symplectic 

geometry on M. In particular, we have the correspondence A ,-+ a -1 (A) between Legendrian manifolds in N and G-invariant 

Lagrangian manifolds in M. 

In proving Theorem 1', we assume that two homogeneous 1-forms a0, a 1 vanishing on : r - l (A)  and the family of 

symplectic structures cot= (1--t)dcCo+tdC~l. are defined on the G-fibration ~r: M --, N. In Eq. (2), a = a t - a 0 vanishes on 

~- I (A) .  Since a and co t are homogeneous of degree 1, the solution V t of Eq. (2) is homogeneous of degree 0. Therefore, the 

diffeomorphisms gt commute with the G-action and take co t to oJ 0 while preserving Jr- l (A)  and the fibration. 

Omitting these diffeomorphisms in N, we obtain diffeomorphisms that take the corresponding contact structures into 

one another while preserving A. 
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Remark 2. The homotopic method of proof of  Theorems 1 and 1 ~ goes back to the work of  Moser [39] on volume 

elements. We can similarly prove that the symplectic (contact) type of a germ of a nonsingular submanifold in a symplectic 

(contact) space is determined by the restriction of the symplectic (contact) structure to this submanifold. For such proof and 

discussion of results, see [10, Ch. 2, Sec. 1]. 

An intermediate result is available for the germs of singular coisotropic manifolds with H 1 = 0: for a fixed "interior" 

geometry, the "exterior" geometry is stable. Results of this type will be called relative Darboux theorems, because the stability 

condition of the symplectic (contact) structure in these theorems is independent of the structure itself. 

As we shall now see, not every singular manifold admits a Lagrangian embedding. 

A germ of an analytic set is called reduced if it cannot be decomposed into the product of  a germ of an analytic set and 

a nonsingular manifold of positive dimension. 

Let O'.~= ~0 (A) be the algebra of germs of analytic functions on A, tacO'~ a maximal ideal. Then d ( A ) =  dim m/m 2 

is the least dimension of  the space in which A is embedded. 

Proposition 1. For a reduced germ of a Lagrangian manifold A, d(A) = 2dim A. 

Proof If d(A) < 2dim A, then there exists a germ of an analytic function that vanishes on A whose differential does not 

vanish at the origin. The Hamiltonian flow of this function fibers A into nonsingular curves over a Lagrangian germ whose 

dimension is less by 1. Therefore A is not reduced. 

COROLLARY. A reduced germ of an n-dimensional analytic set of  codimension <n  does not have a Lagrangian 

embedding in a 2n-dimensional symplectic space. 

The following proposition shows that in the complex case a reduced germ A with Hi(A) = 0 admits at most one (up to 

equivalence) Lagrangian embedding. 

Proposition 29. Let A be a reduced germ of a Lagrangian manifold. Then in each characteristic class there are at most a 

finite number (one in the complex case) of classes of equivalent symplectic structures in which A or its product A • D with a 

nonsingular manifold is Lagrangian. 

Proof. The values at the origin of the coordinate 2-forms that vanish on A and have a given characteristic class in Hi(A) 

constitute a finite-dimensional space. Degenerate 2-forms constitute a proper algebraic hypersurface in this space. Symplectic 

structures whose values at the origin lie in one connected component of the complement of  this hypersurface are equivalent by 

Theorem 1 and by the fact that the diffeomorphism of a reduced germ preserves the origin. 

For the product A x D, repeating dim D times the construction from the proof of Proposition 1, we obtain a decomposi- 

tion of the symplectic space (M, co) 3 A • D into the product of  (M', w')  D A and (M", co") D D. Hence it follows that the 

equivalence class of  the symplectic form co depends only on the first factor. Q.E.D. 

For the product A • D of the reduced Lagrangian germ A and the nonsingular manifold D, d(A • D) = 2dim A + dim 

D and, conversely, this equality and the Lagrangian property of A x D imply that the germ A is Lagrangian. In the following 

example, the reduced factor A of the Lagrangian germ A x D does not have Lagrangian embeddings: d(A) > 2dim A. 

Example. Let A C C 2 be a germ at zero of  the Lagrangian curve with the equation x 3 + y7 + axyS = 0. For a ~ 0, dim 

HI(A) = 1 and the 1-form xdy generates Hi(A). The function u = f A  xdy is analytic on the resolution A of the germ A. The 

image A~"' x'v-~) C3 is a Legendrian curve L relative to the contact structure duy = xdy. We have HI(L) = 0, d(L) = d(A) + 1 = 

3. The symplectization of L is a Lagrangian surface in C x • C 3 diffeomorphic to C • • L. Its germs at the points of the edge 

C • • {0} have d = 4 and an acyclic de Rham complex. They are pairwise nonisomorphic as germs of Lagrangian manifolds: 

diffeomorphisms that preserve C • • L and take the symplectic structure w to 2co move the application point of  the germ (z, 0) 

to the point (;t-lz, 0). 

2. LOCAL SYMPLECTIC TOPOLOGY 

The following conjecture of symplectic topology was recently proved by Gromov [35]: 

a nonsingular closed manifold does not have exact Lagrangian embeddings in a space with a standard symplectic 

structure. 

Recall that a Lagrangian embedding is called exact if the symplectic form has characteristic class 0. 

For curves, this theorem implies that a closed plane curve enclosing a zero area is self-intersecting. Equally obvious is 

the corresponding assertion for a closed hypersurface enclosing a zero volume. However, for Lagrangian manifolds of dimension 

>_2 the problem is far from trivial and remained open for a long time. 
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This problem has the following local analog that relates to singular Lagrangian manifolds. 

Conjecture. If Hn(A) ~ 0 for the germ A of a n-dimensional Lagrangian manifold, then Hi (A)  ~ 0 and the characteristic 

class of the symplectic structure is nonzero~ 

We will give a heuristic "proof" of the conjecture. Assume that the characteristic class of the symplectic structure co is 

zero. Then co = da, where a I A = 0. Let V be the vector field tangent to A defined by the equation ivo) + a = 0. The flow of 

the field V consists of canonical transformations of valency - 1 :  Lvo) = -o9. We may take V(0) = 0. The spectrum of the 

linearization of the field V at zero is symmetric about -1/2.  If the field V is equivalent to its linear part, then it flow "analytically 

contracts" A to an isotropic subspace or to a proper analytic subset in it. Therefore A should have homological dimension <n. 

THEOREM 2 (A. N. Varchenko, A. B. Givental'). The conjecture is true for n = 1. 

Proof. The germ of a singular plane curve is defined by the equation f = 0, where fEl3'c~ has an isolated critical point 

at zero. The integrals of  the holomorphic 1-form a over vanishing cycles on the curves f = t are series expandable in fractional 

powers of t and logarithms (see [14]). The exponent ;t(a) of the form a is the least exponent Jl of the monomials t t, t I In t in 

these series. We know [15] that ;t(a) > 0 and that the least exponent is observed precisely for those 1-forms a for which the 2- 

form da is nondegenerate. We will show that [ r  =~./-/1 {f-1 {0}) = 0  for a nondegenerate form da. We may take a I A = 0. 

Then df A a = f6, where 6Ef~,. Let 6 = dfl. Then 

S C~t d 2rl l  3. 
rt C~'- (t) r t 

Hence it follows that the exponent )l(fl) = 2(a) is minimal, and therefore ~ is a nondegenerate 2-form: 8=eodxndy, eo(O ) g=O. 
The equality ~p-XdfA,d=fdxAdy implies that f lies in its gradient ideal: f E (fx, fy)" By Saito's theorem [41], the function f is 

quasihomogeneous in appropriate coordinates, and HI ( f - l (0 ) )  = 0 by the Poincar6 lemma. 

Remark 3. a) The same argument is applicable to the germs of hypersurfaces at an isolated singular point. However, the 

assertions of minimality of  the exponents have not yet been proved in full generality [15]. Moreover, a hypersurface of dimension 

>1 may have nonisolated singularities. Therefore, the analog of Theorem 2 for volume forms remains a conjecture. 

b) Our conjecture is apparently true for nonsingular Lagrangian manifolds in a standard complex symplectic space under 

certain conditions of nonsingularity at infinity, replacing the closure property of the Lagrangian manifold in the real case. For 

instance, on a C 2 nonsingular algebraic curve of genus > 0 transversal to the straight line at infinity, the characteristic class of 

the symplectic form is nonzero. This can be proved by embedding this curve in a versal deformation of a homogeneous singulari- 

ty and applying the Gauss--Manin connectivity properties (see [14]) in the fibration of one-dimensional cohomologies. 

3. LAGRANGIAN MAPS 

3.1. Definitions. A Lagrangian map is the diagram A ~- (M, o~)-+B that consists of an embedding of the Lagrangian 

manifold A in a symplectic manifold (M, co) and a Lagrangian fibration M -,  B. Equivalence of Lagrangian maps is the commu- 

tative diagram 

A C.. CM,~)--B 

I I I 
A' c. ~M',w~)--~ ' , 

where the middle arrow is symplectomorphism. 
A Lagrangian map is called stable if any close Lagrangian map (i.e., a Lagrangian map obtained from the original map 

by a small change of the symplectic structure and/or the Lagrangian fibration) is carried to the given map by a symplectomor- 

phism close to identity. 
We define the graph of the Lagrangian map A~T*B -~B with Hi(A)  = 0 in the following way. The 1-form of the 

action a on T*B is the differential of the function ~o in the complex f2*(A). The graph ~ of a Lagrangian map is defined as the 

image of the map A - + C X B  : Xt-~ (q9 (~,), :~(~,) ). The graph in general is a hypersurface. It may be regarded as the graph of a 

multivalued function on B -- the generating function of the Lagrangian manifold A. Equivalence of Lagrangian maps acts on this 

function as change of variables and addition of a single-valued function. The graph defines the original Lagrangian map: the 

Lagrangian manifold A is the closure in T*B of the 1-graph of the generating function. Suspension and restriction of a Lagran- 

gian map to the submanifold B' C B are defined resp. by adding new variables on which the generating function does not 

depend explicitly and by restricting the generating function to B'. 
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Partition the points of  the Lagrangian manifold A into the equivalence classes of  the germs of the Lagrangian map A 

(M, o~)---~-B at these points. The modality of  a stable Lagrangian map is the number of continuous parameters needed for 

parametrization of these classes. A Lagrangian map is called simple if its modality is 0, i.e., if it is stable and its germs at all 

points of the Lagrangian manifold belong to a finite number of  equivalence classes. 

3.2. We define the local algebra Q of the germ of the Lagrangian map A ~ ( M ,  c0)--~B as the algebra of  functions on 

A n  n-t  (0): Q = O ' A / C A  (ni)*mB. If dim Q < 0% then the germ is said to be of finite multiplicity, and dim Q is its multiplicity. 

There is an affine structure in the fiber F = n - l ( 0 )  of a Lagrangian fibration. Therefore the algebra O'F---k~=G00~ ) of the 

fibration is graded by degrees of homogeneity of the functions. We have the map eye-+ Q that associates to a function on F its 

"restriction" to A f) F. The germ of a Lagrangian map is called (mini)versal if the map rv(0)~,.v(l) . ,.~ v ~  ~ p  ~ ~ is an (iso)epimorphism, 

i.e., if the local algebra is generated by linear inhomogeneous functions in a fiber of the Lagrangian fibration. Let (p, q) be the 

Darboux coordinates in the Lagrangian fibration. From the Weierstrass preparation theorem applied to the C~-module  O~, we 

have 

Proposition 3. Any function ~o(p, q) on a Lagrangian manifold of  a versal Lagrangian map is representable as a linear 

function inhomogeneous in the momenta,  

qJ (p, q) .-~Ao (q) +A,  (q)p,+ .. . +A~ (q)p,~, 

and conversely. 

Remark 4. If I~AC ~7 a (z~i)*l~B, then the Lagrangian map is versal: l~A/al ~ is generated by the functions (Pl .... , Pn, ql ..... 

qn) and is epimorphically mapped to the maximal ideal in Q, so that (ql, ..-, qn) lie in the map kernel. This versality criterion Js 

useful because it is independent of  the symplectic structure and only utilizes the properties of  the projection A --, B. 

THEOREM 3. The germ A ~  (M, o))--*-B of a Lagrangian map is stable if and only if it is versal and Hi(A) = 0. 

Proof. By Theorem 1, the condition HI(A)  = 0 is necessary and sufficient for stability of the symplectic structure co. We 

will show that versality of the Lagrangian map is necessary" and sufficient for its stability relative to changes in the fibration for 

a fixed structure co. A stable Lagrangian map is infinitesimally stable, i.e., every Hamiltonian vector field in M i.s representable as 

the sum of a Hamiltonian field tangent to A and a Hamiltonian field whose flow preserves the Lagrangian fibration. For the 

corresponding Hamiltonians this leads to the equality 

~ = t t  q- A o (q) -k A1 (q) P! -k �9 , .  q- A~ (q) p~, 

where ~ is an arbitrary function from C ~  and h vanishes on A. This implies versality. Conversely, assume given a family of 

Lagrangian maps Ot:At~-(M, co)--~-B obtained from the versal map 00 by a family of  symplectomorphisms gt: M -~ M: A t = 

gtAo . Construct a germ of the lagrangian map E : A X  R~-(M, o) X T * R ~ B  >( R whose restriction to B x {t} is 0 t. Let (Pl, 

�9 .., Pn) be Darboux coordinates in T*R. The Lagrangian map ~" is versa1, and its local algebra Qz  coincides with Q00 and is 

generated by the functions (1,Pl ..... Pn)" By Proposition 3 , .  Po ==- Ao (q, t) q- A~ (q, t) p~ & . . . .  -[- A~ (q, t) p~ in Gax~ .  

The function It ~ p o - -  Ao--  ~ A~p~ (i ~ 1} vanishes on A • R, is linear in the momenta,  and {h, t} = 1. Therefore, the 

flow of the Hamiltonian h restricted to the hypersurface h4(0) carries 00 to 0 t in time t. Q.E.D. 

nian h restricted to the hypersurface h - l (0 )  carries 00 to 0 t in time t. Q.E.D. 

Let A~{M,  o3) be a germ of a Lagrangian manifold. We say that two Lagrangian maps defined by the Lagrangian 

fibrations (M, co) ~ B and (M, co) --, B'  have the same k-jet if the Lagrangian fibrations are transformed to one another by a 

symplectomorphism with the identity k-jet. 

COROLLARY 1 (sufffcientjet theorem). Let the germ A ~ ( M ,  co)-+B of a I_agrangian map be versal and let the k-th 

power of the maximal ideal ntQ in its local algebra Q be zero. Then the germ of the Lagrangian map A ~ ( M ,  ~o~ ~ B  t with the 

same k-jet is equivalent to this germ. 

Example. The 1-jet at zero of the versal Lagrangian map (p, q) ,~ q of  the plane curve q = p2 is not sufficient. This 

means that the order k of  the sufficient jet in Corollary 1 in general cannot be lowered. 

Proof. The germ of a symplectomorphism with the identity k-jet may be deformed into the identity germ in this class of 

symplectomorphisms. Therefore Corollary 1 will follow from Theorem 3 if we show that the germ A ~- (M, o)---~B" is versal. 

Let (p, q) be the Darboux coordinates in the fibration (M, w) ~ B. If q~ {p, q}Era~ ~ , then r p ~ l ,  where I is the ideal 

in O'~ generated by ql .... , qn. Indeed, a monomial  of  degree k in the variables Pl .... , Pn defines the zero class in Q = O ' M I ,  

i.e., it lies in I. 
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Let P~ - -  p~ + R~ (P, q), Q t - q, -k St  (p, q) be the components of the symplectomorphism carrying (M, co) --, B to 

(M, 0 ~ B ' ,  R~, S~6m~ 1 �9 Then the ideal I '  in tYA generated by Q1 ..... Qn lies in I. On the other band, 

I c m. j  + I'  ~ Hence, I = I ' ,  by Nakayama's lemma [9] applied to the G'~-module I/I'. Since R i E I, then the functions 1,P 1 .... , 

Pn generate the space Q =tYA/ I '  if 1@1 .... .  Pn generate Q = t Y M I .  
COROLLARY 2. The 1-jet of  a versa! Lagrangian map of a reduced Lagrangian manifold is sufficient. 

Proof If ~P6m~, then q~Er~AI . Indeed, in the expansions P z P i = Z  ak'u (q) Pk+bii (q) aijk ~ I, bij E 11, because a 

Hamiltonian that vanishes on a reduced Lagrangian manifold has zero 1-jet at the origin. 

COROLLARY 3. Let  A ' - ( M ,  ~0)~ be a germ of an algebraic Lagrangian manifold in the standard symplectic space. Then 

a stable germ of the Lagrangian map Ar c0) - + B  is equivalent to the algebraic germ. 

3.3. A Legendrian map is the diagram A ~ M - +  B that consists of an embedding of the Legendrian manifold A in the 

Legendrian fibration M --, B. The image of A in B is called the front of the Legendrian map. The front, in general, is a singular 

hypersurface in B. The Legendrian fibration M --, B is locally canonically identified with the fibration PT*B --, B of contact 

elements on B. A typical Legendrian map is defined by its front: the Legendrian manifold A consists of  the contact elements of 

the front (the nontypical Legendrian maps among all the Legendrian maps of the manifold A constitute a set of infinite codi- 

mension). Equivalence of these Legendrian maps is a diffeomorphism of their fronts. 

To the Lagrangian map A ' - - T * B ~ B  corresponds the Legendrian map Ar of the same manifold A if 

Hi(A) = 0: the graph �9 C jOB of the Lagrangian map is the front of the Legendrian map. The fibers of the fibration JOB --, B are 

transversal to the contact elements to q~. Replacing the vertical field 0/0u in JOB with another vector field transversal to the 

contact elements to ~ defines another Lagrangian map A~T*B' -+  B' .  These Lagraugian maps are not necessarily equivalent 

(see 3.4), although the corresponding Legendrian maps coincide. 
i , 

We define the local algebra Q of a germ of the Legendrian map Ac-.PT B-+ B at the point 0 E A by setting 

Q = tYA/tYA ( ~ i ) * 'B .  

In the projective space PT*t(o)B take an affine chart containing the point i(0) and a coordinate system (Pl,-.., Pn) centered at 

this point. A germ of the Legendrian map is called (mini)versal if the functions (1,pp ..., Pn) generate (form a basis in) Q. This 

condition is independent of the choice of the affine chart and the coordinate system. 

The Legendrian map corresponding to a versal Lagrangian map is versal. The converse, in general, is not true. 

The following theorem is proved like Theorem 3, applying Theorem 1' instead of Theorem 1. 

THEOREM 3'. A germ of a Legendrian map is stable if and only if it is versal. 

Analogs of Corollaries 1 and 3 of Theorem 3 are also true in the Legendrian case. 

3.4. Let A X D  ~ T*B-+B be a germ of the Lagrangian map of the product of the Lagrangian germ A by a nonsingular 

manifold. Assume that the projection {0} x D --- B is an immersion. Then the restriction of a Lagrangian map to the transversal 

B 0 C B to the image of {0} x D is a germ of the Lagrangian map A r T*Bo-~-Bo. 
Proposition 4. If the restriction A ~ T*Bo--*Bo is stable, then the original germ of the Lagrangian map is equivalent to 

its suspension. 

Proof Restricting the original Lagrangian map E to the fibers Bt, t E D, of the tube neighborhood B --, D of the image 

of {0} x D in B, we obtain a family of Lagrangian maps 0t : A '-- T*Bt--~Bz. The corresponding family of generating functions 

considered as a multivalued function on B is the generating function for E. Since 0 0 is stable, then the family 0 t is equivalent to 

a constant family. Therefore, the generating function for V reduces to a form independent of t. 

As the degree of a germ of finite multiplicity of a Lagrangian map we take the degree of the projection A -* B, i.e., the 

number of complex preimages of  the general point. The degree does not exceed the multiplicity dim Q of the image, but may be 

less than dim Q (see Chap. 3, See. 3). 

Let A ~- T*B--~B be a germ of a Lagrangian map of degree p, Hi(A)  = 0, u: A --, C its generating function. Let us 

define the Lyashko--Looijenga map from the base B to the space 9~, of polynomials of degree/x of a single variable with a 

fixed highest order coefficient and zero sum of roots. This map associates to the point q E B a polynomial whose roots are the 

/~ values of  the generating function u at the points ~ -a (q )  shifted by a constant so that their sum is zero. The image of the 

Lyashko--Looijenga map is a germ of an analytical subset in Y'~ -- an invariant of the equivalence class of a germ of a Lagran- 

gian map. If the dimension of this image is less than i~--1 = d i m  ~ , ,  then the Lagrangian map is unstable: the image may be 

altered by a diffeomorphism of the graph �9 C C x B close to the identity diffeomorphism. In particular, i f p  > dim A + 1, then 

the Lagrangian map is unstable and has function moduli. 
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Proposition 5. Let the germs of a Lagrangian map of degree not exceeding n + 1 occur irremovably in the restrictions of 

some Lagrangian map to n-dimensional submanifolds. Then this Lagrangian map is not simple. 

Proof. The condition implies that on the Lagrangian manifold A of the given Lagrangian map there is a submanffold 1 of 

codimension n at the points of  which merge not more than n + 1 sheets of the projection :r: A -~ B. If the germ of the Lagran- 

gian map at the point x E l is equivalent to the germs at close points of 1, then there exist dim l vector fields on B independent 

at the point :r(x) that generate automorphisms of the germ of the Lagrangian map at the point x. The Lyashko--Looijenga map 

of this germ therefore has fibers of dimension _>dim l and an image of dimension _<n. By assumption, this is a map to the space 

of polynomials of dimensions >n. Hence follows instability of  the Lagrangian map. 

Example. A stable germ of a Lagrangian map of a plane curve is equivalent to one of the germs A~ ~ T*C--~C , where 

A r is defined by the equation p2 = qr, r = 1, 2, 3 ..... These germs are simple. Indeed, by Proposition 5, the degree of a stable 

germ does not exceed 2. By the Weierstrass preparation theorem, a two-sheeted branched covering of a disk is locally diffeomor- 

phic to A r. By the Poincar6 lemma, HI(Ar) = 0. By Remark 4, the germs of Lagrangian maps of degree 2 are versal and, by 

Theorem 3, stable. Because of connectivity of  the space of germs of symplectic structures on a plane, Lagrangian maps of curves 

A r with the same r are equivalent to one another. 

The germs of a Lagrangian map in general position of the manifold A r x D are also simple at almost all the poin~ in 

{0} • D. This follows from Proposition 4. 

4. THE GEOMETRY OF BIFURCATION DIAGRAMS 

This is the title of  the paper of Lyashko [27] which studies bifurcation diagrams of germs of holomorphic functions. 

Many of their properties carry over to versal Lagrangian maps. 

The deformation F(x, q), q ~ B, of  a germ Of the function F(x, 0) is called a generating family of the kagrangian map 

A ~ T*B-+B : 

A = { ( p ,  q) ]Xx : F~(x, q) = 0 ,  p=Fq(x, q)}. 

If the matrix (Fxx, Fxq ) [ (0,0) is of maximum rank, then A is a nonsingular Lagrangian manifold. A germ of a Lagrangian map of 

a nonsingular Lagrangian manifold is stable if and only if its generating family is a R+-versal deformation of the germ F(x, 0) 

(see [9]). 

The properties of  versal Lagrangian maps of nonsingular manifolds are translatable into the language of the singularity 

theory of functions. Versality of the Lagrangian map of a nonsingular manifold is equivalent to R+-versality of its generating 

family. The local algebra Q becomes the local algebra CYx/(F~ ( . ,  0))  of  the germ of the function F ( ' ,  0). Multiplicity in this 

case is equal to the degree of the Lagrangian map and is called the Milnor number. The graph of a Lagrangian map is the 

discriminant or the bifurcation diagram of zeros in the base of the R-versal deformation of the germ F ( ' ,  0). The following 

concept in the theory of Lagrangian maps corresponds to the bifurcation diagram of the functions of the family F. 

The bifurcation diagram of a germ of a Lagrangian map of finite multiplicity A ~ (M, ~)-->-B is the set Z C B of points 

where the number of  values of the generating function is less than the degree of the Lagrangian map. The bifurcation diagram 

is a germ of an analytic hypersurface. In general, it has three components: the image of the singular points of lk under the 

projection A --, B, the set of critical values of the projection A --> B (jointly they form the caustic of the Lagrangian map), and the 

Maxwell stratum at the points of which merge the different branches of  the generating function. 

Let A ~ (M, co)-+B be a miniversal Lagrangian mapping whose degree/~ is equal to the multiplicity (and is thus equal 

to d i m A +  1). 

Also assume that Hi (A)  = 0. Denote by u: A --> C its generating function, tt--=- ~ ~,~ p~dqi �9 By Proposition 3, function 
~--I 

q0EOA is uniquely representable in the form ~ p ~  aiPt, P~= --1, niECe. Denote by W i vector field ~ ~v~j {q) a/c)q] 
i=1 j = l  

on B determined from the expansion U ' = ~ w , t p  ], i = l  . . . . .  ~ - - I  and by Vi the vector field .~d[vq{q)--6,jq~]c)/aq] 

on C • B determined from the expansion ptU= ~ vqpy, i = 1 . . . . .  la . Here  q = (ql ..... qu-1) are the coordinates on B, 

q~, is the coordinate on C. 
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THEOREM 4 (see [21, 22, 27, 34, 42)]. 

1) Each germ of a vector field in C • B is uniquely representable as the sum of a vector field with coefficients indepen- 

dent of q~ and a vector field tangent to the graph qb C C x B. 

2) The vector fields in C • B tangent to the graph �9 form a free module over O' c• with the generators V 1 .... , V#. 

3) Assume additionally that the points from B where three or more values of the generating function merge form a set 

of codimension _>2. Then the vector fields in B tangent to the bifurcation diagram X C B are liftable in C • B to vector fields 

tangent to the graph (I, and form a free ~Yn-module with the generators W1, ..., W#_ 1. 

Remark 5. The additional condition in part 3 is a condition on the singularities of A: it is sufficient that at the general 

points of the stratum of singularities of codimension 1 the manifold A be representable as a two-sheeted branched covering of a 

polydisk. Without this additional assumption, part 3 does not hold, as we can see from the following example of a Lagrangian 

map defined by the graph 

u (u - -  q~) (u + (1 + q2) q~) = 0 in  C X C 2. 

It can be shown that this map is miniversal, X C C 2 is defined by the equation ql = 0, but the translations (q~, q2) 

(q~, q2+cons t )  arc not liftable to diffeomorphisms of the graph. 

Proof. 1 ~ We will show that the fields V i are tangent to the graph (I). At a nonsingular point x, �9 is the graph of the 

function q~ -- u(q), and 0u/0qi [ x -- pi(x), where Pi(X) is the value of the momentum Pi at the preimage of the point x on A. We 

have 

Lv I (q~ --  u (q)) Ix = vivt (q) - -  Z vii (q) p~ (X) + u (x) Pi (x) = 0 

from the definition of the field V i. 

2 ~ If a fiber of the Lagrangian fibration (M, oJ) --, B intersects A a t / ,  different points, then these points are affinely 

independent in the fiber. This follows from versality. Indeed, if these points are dependent, then the values of linear inhomoge- 

neous functions at these points are connected by a universal relationship, which cannot hold for all functions. But this contra- 

dicts Proposition 3, which states that any function is expressible in terms of linear functions. 

Hence it follows that a vector field in C • B independent of q~ and tangent to qb is the zero field. Indeed, the vector of 

such a field at the general point x E C • B is parallel to/* = dim (C • B) hyperplanes tangent to the graph at/~ points in 

C k N qb. Since these hyperplanes are independent, the vector is zero. 

3 ~ We will show that every vector field in C • B is uniquely representable as the sum of a field independent of qa and 

a combination of the fields V i. Indeed, each element q~O'c xx is uniquely representable in the form ~o = Xai(q, Cl~)p i. Repre- 

sent ~o in the form q~=~(q, p, q~--u) (q~--u)+O(q, p) and expand ~p and 0 in Pi: 

~=Eb~(q, q,)p~, O=,Y.c,(q)p, 

Note that 0 and c i are defined uniquely. Using the equalities p~ (u--q~) =~, (vij--6i~q~)pj , we obtain EaiO/Oq~WY~b,V~ =~. 
c~O/Oq~ , where the right-hand side is uniquely determined by the field with the coefficients a i. 

4 ~ Part 1 of the theorem follows from 3 ~ and 1 ~ From 2 ~ and 3 ~ it follows that V i generate the (Ye • -module of 

the fields tangent to qb: by 2 ~ the terms independent of qt~ vanish for this field. We will show that the fields V i are independent 

at each point outside ~ .  This will immediately imply their independence in the (Yc • of the fields tangent to q~. 

Consider the determinant A whose rows are the components of the fields V i. This determinant vanishes on �9 and is a 

polynomial of degree/~ in q~ with nonzero constant highest order coefficient. By the Weierstrass preparation theorem, these are 

the properties of an irreducible equation of (I) in C • B. Therefore A = 0 is such an equation. 

5 ~ Part 3 on the lifting of fields follows from the general theorem of Lyashko [27] and is ensured by the additional 

condition. Now let W =  x ctt(q)OlOqi be a vector field tangent to E C B, W = W - - e  (q, q~} O/Oq~ its lifting in 
i--I I t~l  

C x B to a field tangent to ~.  Then in O'A we have Z ai (q) P~ = c (q, u). Divide by c the equation A of the graph ~:  
i ~ l  

Ix--1 
C ._~_X i q~bi (q) + a~ (q) + R (q, q~) A (q, qj,). 

i=1 
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Then in we have Since the expansion in momenta is unique, we obta in  Uoreover,  the 
i ~ l  i ~ l  ~--1 

fields W i are independent over t~B~, because W = 0 implies a~ ~--- ~ qi~bi on q~, contradicting the fact that the degree of the 
i ~ l  

Lagrangian map is/~. It remains to check that the fields W i are tangent to E. The computations in 1 ~ show that the fields ~'~ 

-----Wt-- (q~ -~-wia (q)) c)/c)qa are tangent to ~.  Since E is invariantly defined by the projection �9 -~ B, and the flows of the 

fields '(V i commute with this projection, then W i are tangent to E. 

THEOREM 5 (see [27, 21]). Let A ~ ( M ,  o ) -+  B be a germ of a holomorphic miniversal Lagrangian map. Assume that 

its degree/~ is equal to the multiplicity, Hi (A)  = 0, and that all ,u values of the generating function are equal only at one point 

from B. Then the complement B~Z of the bifurcation diagram is the Eilenberg--MacLane space K(G, 1) of  a subgroup G of 

finite index in the group of braids of/~ strings. 

Remark 6. Assume that under the conditions of  the theorem the Lagrangian map is quasihomogeneous, Sl, ..., su > 0 are 

respectively the weights of ql .... , q~. Then the index of G in the braid group is/~!s~,~/sl...s a. This follows from [37] and the proof 

of Theorem 5. 

Proof. The Lyashko--Looijenga map (see the proof  of Proposition 4) is a holomorphic map ~, : B - - - ~  of a ~ - 1)- 

dimensional space. Since the preimage of the origin in 5~, consists of a single point, then this map is finite, and thus proper. 

The preimage of the discriminant A in the polynomial space 9~, is by definition the bifurcation diagram E c B. Outside the 

caustic, the map has a nondegenerate differential. This follows from the versality condition, as explained in 2 ~ in the proof of 

Theorem 4. Therefore X: ( B \ Y . ) - +  ( ~ \ A )  is a connected nonbranched finite-sheeted covering. We know [12] that the space 

~ N A  is the Eilenberg--MacLane space of the group of braids of~t strings, which proves the theorem. 

Remark 7. In Theorems 4 and 5 we studied the properties of miniversal Lagrangian maps whose degree is equal to 

multiplicity. Such a Lagrangian map defines a plane affine connectivity on the base of a fibration with singularities on the 

caustic. This connectivity is specified by the three-index tensor aij k determined from the expansions p~pj = ~  a~spk, i, j = 1, 

. . . .  /~ - -  1. Parallel translation of covectors from T*B takes A C T*B to itself and is uniquely characterized by this property. A 

is Lagrangian if and only if the curvature of the connectivity vanishes. In the complex case, the holonomy group of this connec- 

tivity is a subgroup of the permutation group of the branches of the projection A ~ B. Under the assumption that two branches 

merge at general points of the caustic, this group is the product of the symmetric groups permuting the sheets of the projection 

A --, B for each irreducible component  A. Indeed, by Zariski's theorem, the holonomy group is generated by loops around 

nonsingular points of  the caustic. Each loop generates a transposition of the branches of  A or an identity permt/tation. If A is 

irreducible, then the corresponding group is transitive and is generated by transpositions. It is thus a complete symmetric group. 

THEOREM 6 (see [27, 21]). Let ~ c C • B be the graph of a stable germ of a Lagrangian map. Then the vector field in 

C • B close to the vertical field 0/Ou is carried to this vertical field by a diffeomorphism preserving ~.  

Proof. Let us rectify the vector field by a diffeomorphism gclose to the identity diffeomorphism. Then g ~  C C • B is the 

graph of the Lagrangian map A ~ T*B--~B close to the original map. Indeed, stability of the original Lagrangian map implies 

that H~(A) = 0. Therefore the manifold L C J~B of contact elements to ~ is isomorphic to A. In particular, d(L) = d(A), so that 

the map J1B ~ T*B' produces a m0nomorphic projection of the tangent space ( t az / t~  ~) * .  The same is true for the close 

manifold g.L, and therefore the image of g .L in T*B is isomorphic to A. Finally, equivalence of close Lagrangian maps sends gqb 

back to qb, preserving the field 0/Ou. 

COROLLARY. Assume that a stable germ of a Lagrangian map is quasihomogeneous (not necessarily with positive 

weights, but the weight of  the symplectic form is nonzero) and its graph qb is reduced. Then the germ of a vector field transversal 

to e9 is reducible to the form __+ O/0u by a diffeomorphism preserving ~.  

Proof By stability, HI(A)  = 0 and (1,p~ ..... Pn) generate the local algebra Q =tYJ1. By quasihomogeneity, u =  f 

p~dq~=Y~(deg q~)p~q~/(deg u)~mJ. The vector field v transversal to qb defines the Lagrangian map A~T*B'-+B ' with the 

same graph ~.  Its local algebra Q~=tYJI" coincides with Q. Indeed, F ~  (u, q~ . . . . .  r = I ,  I~rajq-F.  By Nakayama's 

lemma [9] applied to the rYe-module I/I ' ,  we have I '  = I. Therefore the Lagrangian map connected with the field v is versal. 

The corollary now follows from Theorem 6, because the  field v can be deformed into __.0/Ou in the class of  fields transversal to 
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Chapter  2: OPEN SWALLOWTAILS 

5. SYMPLECTIC STRUCTURES IN THE POLYNOMIAL SPACE 

In this section, we introduce two symplectic structures in the finite-dimensional space . ~  of polynomials of odd degree 

/~ = 2 k -  1. 

5.1. We start with the space V N+I of binary forms of odd degree N = 2k + 1. V N+I is the space of the irreducible 

representation of the symplectic transformation group SL 2 of a plane. This space has a unique Sl_~-invariant exterior 2-form (up 

to a numerical multiplier) [18, 19]. The space of binary forms in the variables (u, v) is identified with the space of the polynomi- 

als 

aox N a~x N - I  aNxo 

Nt +(N--I)~ ~'"~ Ot 

in the variable x = u/v. In these coordinates, the SIe-invariant 2-form is given by 

k 

co = X ( - -  1)l dalAda~_l .  
i f 0  

The symplectic structure in ~ i s  obtained from o~ by two-fold reduction. The upper triangular subgroup [~ ~] acts on 

the polynomials by translating the argument x ~ x  + t while preserving the hyperplane a 0 = 1 and the symplectic structure a,. 

The Hamiltonian of the translation group has the form 

2k 
1 

h-----T ~ ]  ( - - 1 y  ata2k_l. 
i = 0  

Symplectic reduction on the hyperplane a 0 = 1 "forgets" the free term aN, which is equivalent to differentiation of the 

polynomial. We thus obtain a symplectic space of polynomials of the form 

.,r2k X~k-1 a~k 
(2k)! --~-al (2k--1)l + ' ' "  ~" 01 " 

The first reduction commutes with argument translation. The second reduction is performed on the hyperplane h = 0. 

This equation permits expressing the free term a2k in terms of all the other coefficients, because a 0 = 1. The reduction thus 

produces a symplectie space ~2k-I of the polynomials 

X~k-.t X2k-a a~k.-t 
(2k--1)l ~ - a ~ ~ + . , . - ] -  01 " 

with a fixed highest order coefficient and zero sum of roots. 

Definition. An open swallowtail is an algebraic subset in the space ~2k-, generated by polynomials with a root of 

multiplicity >_k. 

Proposition 6 [18, 19]. An open swallowtail is a Lagrangian manifold in the symplectic space ~2~-1 �9 

Remark 8. The Hamiltonian of the diagonal subgroup in SL 2 has the form 

k 

f --= ~ (2k + 1 - -  2 0  ( - -  1)t a#2~+l_t. 
i = 0  

The commutator  of f and h is {h, f} = 2h. On the subspace of the original polynomial space formed by polynomials with the 

root x = 0 of multiplicity >__k + 2 we have f = h = 0. Therefore f = h = 0 for any polynomial with a root of multiplicity 

> _ k + 2 .  

Proposition 6 is easily derived from the identity h = 0. Other identities for the coefficients of polynomials with multiple 

roots are given in [17, 18]. 
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Fig. 1 

Examples. For k = 2, the open swallowtail is a semicubic parabola on a plane. For k = 3, it is the two-dimensional cusp 

edge of the discriminant in the space of the polynomials x 5 + a~x 3 + a3x ~ + a4x + at , schematically shown in Fig. la. Differentia- 

tion of polynomials maps it on a swallowtail (Fig. lb) -- the discriminant in the space of polynomials of  degree 4. Under this 

projection from R 4 to R 3, the open swallowtail acquires a self-intersection line. Hence its name. 

5.2. Let us identify the polynomial space ~2k-1 with the space of hyperelliptic curves of genus g = k - 1, 

y2 =x2g+l +LtX2g-l + . . .  +~2g, LEC 2e. 

The point 2 outside the discriminant A C c2g corresponds to a hyperelliptic curve V;t C C 2 of genus g with one point at 

infinity. The homotopic type of the curve V 2 is a bouquet of  2g circles. Plane Gauss--Manin connectivity is defined in the 

fibration of the cohomology spaces HI (Vb  C) over c2g~A: the basis of integer cycles on V,~ can be carried over by continuity to 

neighboring hyperelliptic curves. The period map [16] associates to the point 2 ~ (Ceg~A) a characteristic class of  the area form 

dx ^ dy on the Lagrangian curve V x. We can locally consider the period map as a holomorphic map of the neighborhood of the 

point 2 E (c2g~A) to the 2g-dimensional space HI(Vz, C). It is shown in [36] that the Jacobian of this map does not vanish. 

A nondegenerate skew-symmetric 2-form dual to the intersection index of the cycles on V~t is defined in the space 

HI(V2, C). Applying the period map, we carry it over to the base of  C2g~A. It is shown in [16] that this produces a symplectic 

structure on Cxg~ which is holomorphically continued to a symplectic structure on the entire space C2g. We call it the intersec- 

tion form in the space of hyperelliptic curves. 

Denote by X C A the closure of the set of  points 2 corresponding to curves V2 with g double points. 

Proposition 7. X is a Lagrangian manifold in the symplectic space of hyperelliptic curves. 

The proof  is given in [16]. 

The main reason why X is Lagrangian is that the g cycles of the hyperelliptic curve V~ that vanish at the double points 

for 2 ~ 20 E X are pairwise nonintersecting and generate a Lagrangian subspace in HI(Vx, C). 

Examples. For g = 1, X is a semicubic parabola on the plane of elliptic curves. For g = 2, X is a surface in the space of 

the polynomials xS+X~xS+gzxZ+~,zx+Z4 formed by the self-intersection points of the discriminant in this space. Differentia- 

tion of polynomials maps X on the Maxwell stratum of the Lagrangian map A 4 (in the notation e ;  [9]). The relative position of 

the Maxwell stratum and the caustic (=  the discriminant of  polynomials of degree 4) is shown in Fig. 2. We see that the Maxwell 

stratum is also a swallowtail. This is not accidental. 

TI IEOREM 7 [16]. The Lagrangian manifold X in the symplectic space of hyperelliptic curves of  genus g is isomorphic 

to the open swallowtail in the symplectic polynomial space ~2g+1. 

Proof. To the polynomial Pn(x) = x n + ~lX n-1 + .... of degree n = 2g + 1 associate the polynomial 

Q2~l  ( x ) =  Rest =oo [(t - -  x)~g-lP2e,~ (t)]ll2dt. 

The expression under Res is the series in powers of t -1 of one of the branches of the function 

t~g V ' ( 1  x ~2ezi t -  ~, 
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Fig. 2 

convergent for fixed (x, 2) for sufficiently large [ t ] .  The correspondence Pzg+l~ Q2~+1 is a quasihomogeneous map to the 

space of polynomials of  degree _2g + 1. Computing Q modulo (l) 2, we obtain 

+ 

[ t 2 ~ r + ~ l  t~g-, -/- �9 . .  + t - '  X Z~g_1 -V.I" 

Since all the coefficients of the first factor are nonzero, the highest-order coefficient in Q (it is independent of i )  is nonzero and 

our map is a quasihomogeneous isomorphism of the spaces of polynomials with a fixed highest-order coefficient. In particular, 

if the sum of the roots of  P is zero, then the sum of the roots of Q is also zero. 

Let P2g+x(X) = (x - a)pg2(x). Then 

Q2z+ 1 (tz)-~- Rest =oo (t -- a)g P g (t) dt ----O. 

We similarly verify that Q ' (a)  = Q"(a) . . . . .  Q(g)(a) = 0. Thus, if P e X, then Q is a point of an open swallowtail. The 

isomorphism assertion now follows from irreducibility of the open swallowtail. The latter in turn follows from the fact that an 

open swallowtail is the image of the space of the polynomials Qg(x) = xg + alxg-1 + ... under the mapping Qf-~(x--al/(g+ 
1 ) ) g+lQg. (In fact, this map is a normalization of the open swallowtail.) It can be shown (see Corollary 1 of Theorem 11 in Sec. 

7) that the quasihomogeneous symplectic structure in which X is Lagrangian is unique up to a multiplier. Therefore, the 

quasihomogeneous automorphism of the space ~2a+1 constructed above also takes into one another two symplectic structures 

in this space. 

Remark 9. a) The quasihomogeneous automorphism of polynomial spaces induces a transformation of a part of the 

coordinates having a lower quasihomogeneous degree. In particular, this induced transformation sends the Maxwell stratum of 

Fig. 2 to a caustic. 

b) Applying Proposition 2, we can show (Corollary 2 of Theorem 10) that in both the complex and the real cases the 

germs of symplectic structures where an open swallowtail is Lagrangian are equivalent. 

c) Generalizing Proposition 6, we will list the ranks of the restriction of the intersection form to the discriminant strata. 

Let the stratum points correspond to the curves VX with normalization of genus p < g. Then the sought rank is 2p (A. N. 

Varchenko, compare [16, Sec. 6]). In particular, X is characterized as the set of 2 6 c2g for which the curve VX is rational. The 

assertion about the rank implies, in particular, that for g > 1 two symplectic structures in ~2g+~ are different: curves of genus 

p = [g/2] correspond to the points of the open swallowtail. 

d) The intersection .~arm defines the field of characteristic directions on the discriminant. At the point of the discrim- 

inant corresponding to the polynomial (x - a)2P2g_l(X), the tangent space to the discriminant consists of all polynomials of 

degree _<2g - 1 for which a is a root and the characteristic direction is generated by the vector (x - a)P2g_l'(X ) in the tangent 

space. Omitting the details, we will only stress the main point of the proof: the form (x - a)P2g_l'(X)(dx)3 J is a total differential 

on the normalization t 2 = P2g_l(X), t = y/(x - a), of  the curve y2 = (x - a)ZP2g_l(X ). 

e) The intersection form is constructed in [16] in a much more general setting. We can start with an arbitrary irreducible 

germ of a plane curve at a singular point (instead of starting with y2 = x2g+l), take as the family VX its R-miniversal deforma- 

tion, and construct the period map using the germ of the area form in general position holomorphically dependent on I .  Under 

these conditions, the base of the deformation is of even dimension ~t = dim HI(V~, C), and the intersection index of the cycles 
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Fig. 3 

on V 2 is nondegenerate. It is proved in [16] that the resulting intersection form on the base of  the deformation is holomor- 

phically continued on the discriminant to the germ of a symplectic structure in the entire parameter space and is independent of 

the choice of  the area form up to a discriminant-preserving diffeomorphism. 

The manifold E of the curves V,I with/~/2 double points is nonempty and Lagrangian with respect to the intersection 

form. Thus, the series of open swallowtails is embedded, by Theorem 6, in the wider class of singular Lagrangian manifolds. We 

will see that open swallowtails play an important role in the problem of going past an obstacle and in other applications~ 

However, the role of  their generalizations, and equally the role of  the intersection form in the space of hyperelliptic curves, is 

not clear: no interesting applications have been found so far. 

6. SINGULARITIES OF RAY SYSTEMS IN THE PROBLEM OF GOING PAST AN OBSTACLE 

The problem of going past an obstacle requires finding the extremals of the length functional on a Riemannian manifold 

with an edge. An edge is a nonsingular hypersurface 0B -- the boundary of the obstacle -- on the manifold B 'without an edge. 

The extremal between the points ql, q2 E B in the problem of going past an obstacle consists of segments of geodesics in B 

tangent to 0B that originate from the points ql, qz and a segment of a geodesic on 0B connecting the points and the directions 

of tangency (Fig, 3). Treating q2 as a variable point, we obtain a bundle of extremals that separate from some bundle 7 of 

geodesics on 0B in all directions tangent to 7. 

Fix the bundle 7 of  geodesics on 0B, i.e., the set of oriented geodesics leaving some nonsingular initial hypersurface on 

0B in the direction of its positive normal. 

Definition. The ray system of the bundle 7 is the set of oriented geodesics on B tangent to the geodesics of the bundle 7. 

The Riemannian metric on B defines the Euclidean structure ( ,  > in the fibers of  the fibration T*B. The characteristics 

of the hypersurface (p, p) = 1 in T*B are projected to oriented geodesics on B. A canonical symplectic structure exists on the 

manifold of  the characteristics of  the hypersurface in the symplectic manifold (defined at least locally) (see [10, p. 52]). There- 

fore, oriented geodesics on B locally form a symplectic manifold. The ray system of the bundle 7 in general position on 0B is a 

Lagrangian manifold in the geodesic space. Rays asymptotic to 0B are its singular points. 

Example 1. The manifold of oriented geodesics in the Euclidean space B = R n is symplectomorphic to a cotangent 

fibration of the sphere T*S n-1 up to the sign of the symplectic structure (see [4] and [10, p. 53]). Let n = 2 and let 0t3 be a 

curve in general position on the plane. Then the ray system is the curve dual to 0B. Rays tangent to OB at infle, ction points are 

the cusp points of the dual curve, the rays bitangent to 0B are its double points. 

Definition. The triad (L, l, H) in the symplectic manifold M consists of  a nonsingular Lagrangian manifold L, a nonsing- 

ular hypersurface l C L (l is an isotropic manifold), and a hypersurface H C M tangent to L at th,~ points of L Equivalent triads 

are moved term by term to one another by the symplectomorphism M. 

A germ of the triad (L, l, H) corresponds to a germ of the Lagrangian manifold A in the space of characteristics of the 

hypersurface H formed by the characteristics through l. The characteristics tangent to l are the singular points of A. 

Remark 10. At the quadratic tangency points x E l of H to L, the tangent space to L is projected along the characteris- 

tics of the hypersurface H on a Lagrangian space. At the points of A, we have the field x ~ T ( x )  of Lagrangian spaces that 

analytically continues the field of tangent spaces to A to its singular points. Continuous deformation of the triad produces a 

continuous variation of the field T. The map z~: l - ,  M'  whose image is the nested Lagrangian manifold with the field x(~l) ~-~ 

T(x) of Lagrangian spaces tangent to A = n(l) at nonsingular points (T(x) = T,(x)A) can be completed to a triad in M. 
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Example 2. With the bundle 7 of geodesics on 0B associate a triad in T*B. Let H = {(p, q) I (P, P) = 1} be the 

manifold of all unit vectors, let L consist of all possible continuations of the velocity covectors ~ of the geodesics of the bundle 

7 to covectors r /on  B (Fig. 4), and let l = H I'1 L be the manifold of velocity unit vectors of the geodesics from 7. It is easy to 

verify that (L, l, H) is a triad, and H is strictly quadratically tangent to L (Fig. 4) because of the convexity of the scalar square 

(r/, r/), The Lagrangian manifold A of this triad is the ray system of the bundle 7. 

Example 3. In the notation of 5.1, we define a triad r n in the space of polynomials of  the form 

X~l z X2•--I 

(2n)~ +al (2n-1)t +"" +~' 
setting / - /=  h -1 (0), L =  {alan+, . . . . .  a2n =0} ,  t=I-If]L. Clearly, H is strictly quadratically tangent to L along 1. Denote by 

rn+k,k the suspension (L)< R h, l • R h, H >( T*R k) of the triad rn, k = 0,1,2,.... The Lagrangian manifold A of the triad Zn+k,k 

is the product of R k and an open swallowtail in the polynomial space 9~n-r .  

THEOREM 8 [19]. The triads rm,k, m ___ k, are stable. The germ of a triad in general position at the quadratic tangency 

point of a hypersurface to a Lagrangian manifold is equivalent to the germ at zero of one of the triads rm,k" 

Proof. The equation h=a2~- -a2~-~a~+. . .  ! a ~ / 2 = O  of the hypersurface of the triad r n is linear in (an+l, ..., a2n)~ 

For an arbitrary germ of the triad (L, l, H) in R am, we locally identify R 2m with T*L so that the intersection of H with each fiber 

of the fibration T*L --, L is an affine hyperplane. To this end, we complete the equation of H to a system of Darboux coordi- 

nates. The projection along the coordinate Lagrangian space transversal to L defines in R am a Lagrangian fibration structure 

T*R m with the required property. Fiberwise translations by the vectors of the Lagrangian section L C T*R m identify T*R m with 

T*L without destroying the linearity of  the intersections with the fibers of the fibration. 

The dual object to the field of  affine hyperplanes in cotangent spaces to L is the field v of  tangent straight lines on L 

together with the field ~ of 1-forms on these lines. The field v extends to the entire L the field of characteristic directions of the 

hypersurface H defined at the points of I C L and tangent to L at these points. For a triad in general position, the projection of 

l along the integral curves of  the field v has only Whitney singularities, i.e., there exist coordinates xr 1 . . . . .  )]'n-1 on L in which 

v = (0/Ox) and I is defined by the equation 

G= x~+~lx~-~'-q- . . . +~,~-1 = 0 ,  n ~ m .  

Since H is quadratically tangz,,t to L, we have ~ = ~o(x, Jl)G2dx, where ~(0, 0) ;~ 0. 

The family of  semiforms G(~odx) 1/2 on a straight line fibered over 2 is reduced to the form y = y ( x ,  ~), A = A ( Z )  by 

the substitution of variables y = y(x, ,t), A = A00. 

This follows from the versality theorem for the semiforms f(x)(dx) 1/2 relative to the group of orientation-preserving 

diffeomorphisms of the straight line (see [19]). The versality theorem for the degrees of volume forms is discussed in Appen- 

dix 1. 

We have thus normalized the hypersurface H c T*L. It has the required form in the coordinates an = G (9', A),  an- ,  = 

0 G/Oy, a~,,_2=O2G/aq 2 . . . .  on L and the dual coordinates an+l,an+2,.., on L*. 
COROLLARY. In the problem of going past an obstacle in general position, the germ of the ray system corresponding 

to the bundle of  geodesics in general position on the boundary of the obstacle is symplectically diffeomorphic to the germ of an 

open swallowtail or the germ of the union of two nonsingular Lagrangian manifolds at a transversal intersection point. 
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In order to prove the corollary, it suffices to verify that for the edge 0B and the bundle of geodesics in general position 

on the edge, the triad of Example 2 satisfies the condition of general position assumed in the proof  of  Theorem 7. The last 

condition is a condition on the location of the manifold of velocity" unit vectors of  the bundle of  geodesics on 0B in relation to 

the geodesic flow on the manifold of unit vectors on B. The bundle of  geodesics on 0B is defined by an arbitrary nonsingular 

Lagrangian submanifold in the space of geodesics on 0B. Omitting trivial details, we note the following proposition, which is 

useful for proving the corollary. 

On the set q5 of unit vectois in B applied at the points of 0B there is a stratification by orders of  tangency to 0B: q~ D 

q50 D q5 t D qb 2 D ... (tangent, asymptotic, biasymptotic, etc., unit vectors). It is shown in [4] that for an edge 0B in general position 

the projections of  q5 to the space of rays on B along the characteristics on the manifold H of all the unit vectors have only 

Whitney singularities -- a fold at the points of qb0\qb 1, a pleat at the points of  qbl\q5 o, etc. On the other hand, a geodesic flow of 

the edge 0B is defined on the manifold 4) 0 of the unit vectors tangent to 0B. For an edge in general position, the projection of 

qb I C qb 0 to the space of geodesics on 0B also has only Whitney singularities. The second stratification do 1 arising in this case 

coincides with the first stratification. 

Proposition 8. For a hypersurface 0B C B in general position, the projection of the set q51 of asymptotic unit vectors to 

the space of geodesics on 0B has a fold at the points of qb2\q53, a pleat at the points of  qb3\q54, etc. 

This proposition is a multidimensional generalization of the following theorem of classical differential geometry of 

surfaces in R3: the asymptotic direction at the inflection point of  an asymptotic line on a surface of negative curvature is 

biasymptotic, and conversely. 

7. PROPERTIES OF OPEN SWALLOWTAILS 

7.1. Denote by Xk(n ) the manifold of polynomials of the form 

Xt~ Xrt--2 
Fn(x, a).=-h7 +a~.(~_2), + . . .  +a~, 

having a root of multiplicity _>n - k. For k _< n - 2, Xk(n ) is a k-dimensional singular manifold, Zn_2(n ) is the discriminant in the 

polynomial space .~,~, Yk(2k + 1) is the open swallowtail in the space /~2k+l- 

Differentiation of polynomials defines a map of degree 1, Xk(n + 1) -,  Xk(n), of manifolds of equal dimension. We 

obtain a tower of maps 

Xk (k + 2) +- Y'k (k + 3) <- . . .  +- ~k (rt) +- . . . .  (1) 

General Noetherian considerations suggest that this tower is stabilized on the final story'. 

THEOREM 9 (V. I. Arnol 'd [18]). The map Yk(n + 1) --, Xk(n ) is an isomorphism for n _-2 2k + 1, i.e., the tower (I) is 

stabilized starting with the open swallowtail. 

The theorem is easily proved using the identities h = f = 0 from 5.1 for the coefficients of  polynomials with multiple 

roo t s .  

7.2. Let us describe the algebra of  regular functions on a stable manifold. Its normalization X k is nonsingular. The 

coordinates on the normalization are (x,a 2 ..... ak) , where x is a root of  the polynomial F z k + l ( ' ,  a) of  multiplicffy _>k+l. 

THEOREM 10. 1) The subalgebra U l ~ k ( 2 k + l ) ~ [ ~ l  k c o i n c i d e s  with the space of functions of the form 

x 

Q (~, a) Fk  (5, a) d~ + C (a), 
0 

where QGUx k, CfiUo%. 

2) U~g2~+1) is a free module over US'k+, with generators l,ak+2, ..., a2k+l. 

Proof 1 ~ By induction on i we easily verify 

LEMMA [18]. In Uxk we have the equality 

x 
( - -1)  ~ 

ak+~ = i~ o Fk (~, a) d~ t, i = 1, 2, 3 . . . . .  
0 
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2 ~ The miniversal deformation of the semiform xk+~(dx)~/2/(k + 1)! is given by (see Sec. 6) Fk+i(x, a)(dx) 1/2. The 

condition of infinitesimal versality implies that any function ~o(x,a 2 .... , ak+l) is representable as 

k 
1 x l-' ~p(X, a) =Fk (x, a)R (x, a) + ~  F~+~ (x, a) R' (x, ct) + ~ X~ (a) (i--1)! (2) 

Multiplying (2) by Fk+ ~, we obtain 

F 0 x ~ -~ F 
(3) l = l  

If F2k+l ~ Yk(2k + 1) and x is a root of F2k+l of multiplicity _>k + 1, then x is a root of Fk+ t. Integrating (3), we find 

S ~Fk+ad~----- X )~, (a) ~ Fk+, (~, a)d~--t~ t0, a) e2+,  (0, a)12. 
0 i~ l  

x 

Integrating by parts, we obtain that the function S Q (g, a) Fk (g, a) d~q-  C (a) is representable as 
0 

k 

(4) 

In particular, the space of these functions lies in O'Zk(2k+1). 

3 ~ Let A(x, ct)fi~Yy#~k+l). Then A = B(a2,..., a2k+l), and 

( 0 B ( - - D '  ] 
Oak+i Ox 

whence follows the converse inclusion. This completes the proof  of part  1. 

4 ~ k-fold differentiation of polynomials defines the finite map E~ (2k -t- 1) --> ~k+l of degree k + 1. Hence it follows 

that the rank of the tY~k+, -module O'x~ok+l) is k + 1. The representation (4) implies that 1,ak+2, ..., a2k+l are the genera- 

tors of this module. 

COROLLARY. The projection Y'k (2k + 1)-> ~k+l is miniversal. 

Proof Let deg a i = i be a quasihomogeneous gradation in O'Xk(2k+l). Then deg aia j > 2k + 1 for i, j _> k +2. Therefore 

mZk~2k + 2  ~) C_-- (a2, �9 �9 ., ak+3 . By Remark 4, this implies that versality is independent of the symplectic structure and is determined 

by the projection Y~n (2k--}-1)---~Y'h+~ �9 By part  2 of the theorem, it follows that (1,ak+ 2 ... . .  a2k+t ) is a basis in the local algebra. 

7.3. We are describing vector fields tangent to an open swallowtail using an axiomatic definition of a stable manifold. 

Consider the germ n: (X, 0) --- (Y, 0) of a finite analytic map of nonsingular manifolds of  equal dimension in which 

singularity of codimension 1 is in general position, i.e., it is a fold. 

Let S C X be the hypersurface of fold points, S its closure in X, s = 0 a simple equation of S. The field of directions v 

on X is defined at the points from S: this is the field of kernels of the differential of the map zc. The map n defines the embed- 

ding r~* : O'y ~- ~Yx �9 Denote by .~t the space (Yy ~- M ~ CYx of germs of functions whose derivative in the direction of the 

field v vanishes at the points of  S. It is easy to show tha t .~ i s  a finitely generated closed subalgebra in (Yx. Therefore ,.~r =-~Yz 

for some germ of the analytic set Z, X --, Z --, Y. 

Definition. Z is called a universal manifold of the map n. 

Example. Part 1 of  Theorem 10 implies that the open swallowtail Zk(2k + 1) is a universal manifold of the Whitney map 

n : Ek-+~k+l 
Now let X~-T*Y-+Y be a germ of a Lagrangian manifold in general position, (I, its graph. Then (7oc.(Yz, because 

at the fold points of  the projection z:  X --, Y the field v lies in the kernel of the map X --, O. 

Proposition 9. The diffeomorphism of the graph �9 is liftable to a diffeomorphism of the universal manifold Z --, O. 

Proof The diffeomorphism g of the graph O C j o y  is liftable to the diffeomorphism g of the Legendrian manifoldX ~- 

JIY of its contact elements. The field v is invariantly defined by the projection X --- (I). Therefore the subalgebra dYzC~Yx is 

invariant relative to g*.  
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COROLLARY. The vector field in the space 3~k+2 tangent to the discriminant Yk(k + 2) is liftable to a vector field in 

the space 9~2k+~ tangent to the open swallowtail Zk(2k + 1). 

Indeed, Xk(k + 2) is the graph of a stable Lagrangian map Z ~ -  T*6~k+~-+Y~k+l of type A k (in the notation of [9]). 

THEOREM 11 [5, 18]. The vector field in 5~ ,  k + 2 ~ n ~ 2 k + ~  tangent to the discriminant Zn_2(n ) is tiftable in ~ .  

-2 (n) to a vector field tangent to the open swallowtail Zk(2k + 1). Conversely, each vector field tangent to the open swallowtail 

Zk(2k + 1) is representable as the sum of liftings of fields tangent to discriminants in the spaces of  polynomials of degree n, k 

+2 < n_< 2 k +  I. 

Proof. The theorem follows from these assertions. 

1 ~ . Corollary of  Proposition 9. 

2 ~ The vector field tangent to Xn(2n + 1) is tangent to Yk(2n + 1) C Zn(2n + 1) for n >- k. 

3 ~ Theorem 9: Xk(2n + 1) --, Zk(2k + 1) is an isomorphism. 

4 ~ A vector field in ~T~+~ is representable as the sum of a field tangent to the discriminant and the lifting of a field 

from the space 9~,~ (part 1 of  Theorem 4 applied to a stable Lagrangian map of type A~). 

COROLLARY 1. The symplectic structure in ~2h+i in which the manifold Zk(2k + 1) is Lagrangian is the sum of the 

quasihomogeneous symplectic structure co from 5.1 and a 2-form of higher quasihomogeneous degree. In particular, the quasi- 

homogeneous symplectic structure in which Zk(2k + 1) is Lagrangian is unique up to a numerical multiplier. 

Proof By the lemma of Sec. 1, the symplectic structure in which Zk(2k + 1) is Lagrangian is representable in the form 

div~o , where V is a vector field tangent to Zk(2k + 1). It therefore suffices to show that the quasihomogeneous field V is of 

degree 0 only if it is proportional to an Euler field. 

The basis of the module of fields tangent to the discriminant in the polynomial space is described by part 2 of  Theorem 

4. It is easy to see that the Euler field is the only one among them with zero quasihomogeneous degree, while all the others are 

of positive degree. The components of  the vertical vector field in 9~2k+~ tangent to Zk(2k + 1), i.e., the field which is the lifting 

of the zero field in 9~,~ for n _< 2k, vanish on Yk(2k + 1) because the projection E~ ( 2 k +  1 ) - + ~ n  is an immersion at nonsing- 

ular points. By part  2 of  Theorem 10, the degree of a function that vanishes on Yk(2k + 1) is not less than 2 in the variables (ak+ 2 .... , 

aZk+l), and its quasihomogeneous degree is thus >2k + 4. Therefore, the quasihomogeneous degree of the vertical field tangent 

to Zk(2k + 1) is positive (>_3). The corollary now follows from Theorem 11. 

COROLLARY 2. The germs of symplectic structures in which the product of an open swallowtail and a singular manifold 

is Lagrangian are equivalent. 

Proof By Proposition 2, the corollary follows from these facts: the manifold Zk(2k + 1) is homogeneous and reduced~ 

any germ of a sympleetic structure in which Zk(2k + 1) is Lagrangian is homotopic to one of the structures ___co in the class of 

these structures (Corollary 1), and the structures co -- -co (defined by the automorphism a ~  (--1)~a~ of the manifold 

Xk(2k + 1)) are equivalent. 

7.4. THEOREM 12 (V. I. Arnol'd). The germ at zero of the diagram Ek (2k -+- l )~X2~-+Y,  where X 2k "~ Y is m- 

dimensional fibration in general position, m _< k, is reducible to the normal form Ek (2k + 1)~-5~2u+~ ~ 5~2k+~_,~, where the map 

of the polynomial space is defined by m-fold differentiation. 

The proof  is by induction on m. 

Represent the fibration X 2k --, Y as the composition X 2k -* Z --, Y of a (m - 1)-dimensional fibration and a 1-dimension- 

al fibration in general position in relation to Zk(2k + 1). By the inductive hypothesis, the diagram ~k (2k + 1 ) ~ - X 2 k ~ Z  is 

equivalent to the standard diagram Zk (2k + 1) ~ 2 k + t  ~ 9%k+~_m �9 The fiber of the one-dimensional fibration ~2k+2-m-'~ Y in 

general position is transversal to the discriminant Z2k_m(2k + 2 - m) in the polynomial space. By the corollary of Theorem 6 

applied to a Lagrangian map of type AZk+l_m, this one-dimensional fibration is reduced to sta,,Oard form by a discriminant- 

preserving diffeomorphism which is homotopic to the identity diffeomorphism in the class of these diffeomorphisms. By 

Theorem 11, this diffeomorphism is liftable in ~ a + t  to a diffeomorphism preserving Xk(k + 1). It reduces the diagram Zn (2 

k-+-l) r to the required normal form. 

COROLLARY 1. The image of the projection Z~ ( 2 k +  1) ~ X2n--~Y '~ in general position is locally diffeomorphic to 

Yk(n + 1) for n > k. 

COROLLARY 2. The germ of the diagram Eh ( 2 k +  l ) ~ X2~.-*Y ~ in general position is reducible to normal form by a 

diffeomorphism of the base and by a fiberwise affine transformation of the fibration X 2k -'J" Yk" 

Proof. By Theorem 12 and corollary of Theorem 10, the projection Xk(2k + 1) --, y k  is miniversal. Theretbre Proposition 

3 implies that any identity diffeomorphism over the base of the diagram ~ ( 2 k +  1 ) ~- X2h--)-Y ~ restricted to Xk(2k + 1) can be 

replaced with a fiberwise affine transformation. 
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Proposition 10. Let A ~- T*B--+B be a germ of the Lagrangian map of the manifold A diffeomorphic to the product of 

the open swallowtail Zk(2k + 1) and a nonsingular n-dimensional manifold. Assume that the fiber T0*B of the Lagrangian 

fibration is transversal to the tangent Lagrangian space of  the manifold A at the origin. Then the germ of the Lagrangian map is 

equivalent to the suspension of  the standard Lagrangian map ~ (2kq- 1 ) ~ (~2h+~, c0)--~5~+~ defined by k-fold differentiation 

of polynomials. 

Proof Let A = Ek(2k + 1) • D n. Under the conditions of the proposition, the projection of {0} x D n to B is nonsingu- 

lar. Restrict the Lagrangian map to the transversal yk  C B to the image of this projection at the origin. Ty*B N A is diffeomor- 

phic to Ek(2k + 1). The fiber of the projection Ty*B --, T*Y is transversal, by assumption, to the 2k-dimensional tangent space 

to the manifold Ty*B f) A C Ty*B at the origin. Therefore the restriction to yk  is a Lagrangian map in general position of the 

manifold Ek(2k + 1). If we prove that it is equivalent to the standard map, then by Proposition 4 this would imply that the 

original Lagrange map is equivalent to the suspension of the standard map. 

The diagram Y.~ (2k-}-1)~ T* yh_+yk, by Theorem 12, is reducible to standard normal form by a fibered diffeomor- 

phism. This normal form is quasihomogeneous. Therefore this diffeomorphisms sends a symplectic structure to a structure 

homotopic to +_co in the class of zero structures on Ek(2k + 1) and on the fibers of the fibration (Corollary 1 of Theorem 11). 

For any such symplectic structure, a Lagrangian map is versal (corollary of Theorem 10). It now follows from Theorem 3 that 

our Lagrangian map is equivalent to a standard map, because the structures co and -co define equivalent Lagrangian maps. 

8. SINGULARITIES OF MULTIVALUED SOLUTIONS OF FIRST-ORDER SYSTEMS OF EQUATIONS 

A system of first-order partial differential equations on the manifold Y is defined by the submanifold H in the space 

jl(y, R m) of 1-jets of sections of the fibration R m • Y ~ Y, where m is the number of sought functions. The section U of this 

fibration is called a solution of  the system of equations if its 1-graph 

flU={ (u, p, q) [ q6Y, u=U (q), p,=dqU~, i = 1  . . . . .  m} 

is contained in H. 

The 1-graph of a section is an n-dimensional integral manifold of the Cartan distribution on j l ( y ,  R m) defined by the 

equations dug = ~ p~dqj, i = 1 . . . . .  m.  
i = I  A 

The projections jx (}I, R"9 -+ j0  (y, R,~) = R,~ X yn  ~ yn are defined. 

Definition. A multivalued section of the fibration R m x yn  __, y n  is a n-dimensional nonsingular integral manifold of the 

Caftan distribution whose projection to Y is almost everywhere a submersion. The image of the projection of a multivalued 

section in j0(y,  R m) is called its graph. Multivalued sections are called equivalent if their graphs are mapped into one another 

by the automorphism of the affine fibration R m • Y ~ Y. 

Example. For m = 1, the Cartan distribution is a contact structure in j1y,  the multivalued section is a nonsingular 

Legendrian submanifold. The graph of the multivalued section X ~-jty is the graph of the Lagrangian map X ~-T'Y-+Y, 
where embedding is defined by the projection J'Y--~T*Y : (u, p, q) ~ (p, q). Equivalence of Lagrangian maps is equivalence of 

the corresponding multivalued sections. 

In this section we present the results of V. V. Lychagin on the classification of singularities of multivalued sections of 

fibrations of dimension m > 1 on the assumption that the projection X --, Y has a Whitney singularity. For m = 1, this classifi- 

cation was obtained in [2, 9]: singularities in general position are stable and are reducible to A# normal forms, while their graphs 

are locally diffeomorphic to the discriminants Y#_l(/Z + 1) in the polynomial spaces ~ + , .  

Let X '~ ~ J~ (yn, R m) be a germ of a multivalued section in general position. Then a singularity of codimension 1 of 

the projection X --, Y is a fold. Denote by Z the universal manifold of the map X --> Y (for definition see 7.3), by ~ C R m x Y 

the graph of the multivalued section X. 

Proposition 11. The projection of a multivalued section on its graph is decomposable into a composition of maps X 

Z --, ~b. 

Proof The subalgebra G'a~COx is generated by the functions u i and qj. At the fold point, the derivative Lvq j along the 

vector v from the kernel of  the projection X --- Y vanishes by definition. The derivative Lvu i vanishes by the Caftan relationships 

dttz = 2  Pijdqj and by regularity of  the functions Pij on X. Therefore r �9 
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COROLLARY. If a germ of the projection X n --> yn  of a multivalued section in general position of the fibration R na • 

yn  ~ yn  has a Whitney singularity of degree n + 1, then its graph is diffeomorphic to the germ at zero of the manifold En(m + 

n + l ) .  

Proof. The graph ~ C R m • yn  is the image of  the universal manifold zn = Zn(2 n + 1) C R n under the projection R N -~ 

R m x yn. The proposition will follow from Corollary 1 of Theorem 12 if we show that the fiber of the projection R N ~ R m x yn  

is in general position to the manifold Z n at zero. 

The manifold Z n is the graph ot ~ some multivalued section of the fibration R N ~ Y. This foliows from the fact that the 

field of tangent spaces to E n is analytically continuable to singular points (see Remark 10 in Sec. 6). A small perturbation of the 

fibration R n --> R m x Y defines a small perturbation of this multivalued section, and with it a small perturbation of the original 

multivalued section X n. The perturbed section also has a Whitney projection X n --- y n  by stability of the Whitney map. Therefore 

for X n in general position the diagram E ~ ~ R~--+Rm• Y~ is also in general position. 

A stable multivalued section X ~ ~- J~ ( Y", R TM) is called simple if its germs at points from X belong to a finite number 

of equivalence classes. 

The manifold Ek(N) ~ ~N is the graph of a standard multivalued section of the fibration ~PN-->-.~.+~ �9 Its suspension 

is defined by the product of  the diagram Zh(N) ~ ~ N " + ~ + l  and a nonsingular manifold. 

THEOREM 13 (V. V. Lychagin [26]). For N _> 2k + 1 the germ at zero of  a standard multivalued section is simple. 

Conversely, let k _< m and let X ~ ~" J~ ( Y~, R") be a multivalued section in general position. Then its germs at almost 

all the points where the projection X n --, yn  has a Whitney singularity of degree k + 1 are equivalent to the suspension of a 

standard multivalued section. 

Proof. Let  Z~NZk  (2k -k 1) )< R ~-~ be a universal manifold of  the Whitney projection X n ~. yn. The points where the 

(k + n)-dimensional tangent space (mz~lm~)* to yn iS meromorphically projected to R m x y n  form a dense subset in 

{0} • R n-k i fk _< m. At such a point, the germ of the graph ~ C R m • yn  is diffeomorphic to a germ of Z n. The diagram 

Z n ~ R  '~ X yn  .+ y n  in general position in the neighborhood of a general point from {0} • R n-k is reducible to standard normal 

form by a local automorphism of the affine fibration R m • yn  ._> yn  by Corollary 2 of  Theorem 12 (more precisely, by its 

(n - k)-parameter variant). 

Remark 11. a) For N _> 2k + 1, the graph of  a standard multivalued section is an open swallowtail. 

b) V. V. Lychagin also proved that for m > 1 there exist no other simple singularities of multivalued sections with a 

Whitney projection, except those listed in Theorem 13. In particular, for 1 < m < k, there are no simple singularities. 

Chapter 3: SIMPLE SINGULARITIES OF LAGRANGIAN MAPS 

9. COXETER GROUPS AND LAGRANGIAN CURVES 

A Coxeter group is a finite group W of linear transformations of the Euclidean space V/' generated by reflections in 

hyperplanes. Each Coxeter group is the direct sum of the following irreducible groups (see [13], the index equals the dimension 

of V): 
a) Ie(P) (p _> 3) -- the symmetry group of a regular p-gon; 

b) A~, (p ___ 1) -- the symmetry group of a simplex in R~ (A= = I2(3)), D u (/t _ 4), E 6, E7, Es; 

c) B~ (=-C~,/z > 2) -- the symmetry group of  the/z-dimensional cube (B 2 = I2(4)), F4; 

d) H 2 (=I2(5)) , H 3 -- the symmetry group of the icosahedron, H4; 

e) G e (=Ie(6)). 

The space of  orbits V c / w  is isomorphic to C/' by Chevalley's theorem (see [13]). The manifold q~ C C~ of  irregular 

orbits is called the discriminant of the Coxeter group. The discriminant is the image of  the mirrors (i.e., the invariant hyper- 

planes of  the reflections from the group W) under the projection V c --> vC/w.  

The coordinates in the orbit space are the elementary W-invariant polynomials in V C. For an irreducible Coxeter group, 

these polynomials include precisely one polynomial of  maximum homogeneous degree h, which is called the Coxeter number. 

Consider the projection v C / w  -, B = C~-1 along the axis of the invariant of degree h, defined by elementary invariants 

of lower degree. Under this projection, the discriminant �9 is/t-sheeted mapped to B. Indeed, an irreducible Coxeter group 

contains/th/2 reflections [13]. Therefore, the W-invariant equation of  the union of  the mirrors is of  degree/ah, i.e., the equation 

of qb is of degree/t  relative to the invariant of degree h. 
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Consider �9 as the graph of a/z-valued function on B, denoting by A w its 1-graph -- the Lagrangian manifold in T*B. For 

W =, I2(r + 2), A w is isomorphic to the curve Ar: p2 = qr on the syrnplectic plane T*C. 

THEOREM 14. The germ at zero of the Lagrangian map A~v r T*B---~B corresponding to the irreducible Coxeter 

group W is simple. Conversely, let A ~ T*C"--~-C" be a simple germ of a Lagrangian map of the manifold A diffeomorphic to 

the product of germs of plane curves. Then A is diffeomorphic to the product of the curve A r and a nonsingular manifold, and 

the Lagrangian map itself is equivalent to the suspension of the Lagrangian map corresponding to the irreducible Coxeter group 

W of type At`, Dr,, Et` for r = 1, B~,, F 4 for r = 2, Ht` for r = 3, and Ir(r + 2) for r >__ 4. 

COROLLARY 1. The Legendrian manifold of the contact elements of the discriminant of  an irreducible Coxeter group 

is isomorphic to the product of a nonsingular manifold and the curve A r with r = 1 for the groups At`, Dt`, El,, with r = 2 for 

Bt,, F4, and with r = 3 for Ht`. 
COROLLARY 2 [27]. A germ of a vector field in Vc/W transversal to the tangent hyperplane to the discriminant at the 

origin is rectified by a discriminant-preserving germ of a diffeomorphism. 

COROLLARY 3 [27]. The complement of the bifurcation diagram of the Lagrangian map corresponding to the irreduc- 

ible Coxeter group W is the Eilenberg--MacLane space of the subgroup of index/z!hu/#w in the group of braids of/z strings. 

Remark 12. a) Corollary 2 is new for the groups H3, H4, and Corollary 3 is new for the group H 4. 

b) The proof  of  Theorem 14 given below is based on a classification of simple Lagrangian maps of the products of 

curves and its comparison with the classification of Coxeter groups. It would be interesting to find an a priori proof of this 

theorem or at least of Corollary 1. 

Proof. A stable germ of the Lagrangian map A ~ T* C--,-C is of degree/z <__ 2 (see example in 3.4) and for p = 2 it is 

equivalent to the germ Ar ~ T*C---~C corresponding to the Coxeter group I2(r + 2). 

The degree of the projection A n --, C n of the product of n germs of plane curves is not less than the product of the 

degrees of the typical projections of the factors. Therefore (see Proposition 5), if the germ A n ~- T*C"---~C ~ is simple, then A n 

is isomorphic to the product of A r and a nonsingular manifold. 

The projection (p, q) ~ p o f  the curve A r is of degree r. This means (see Proposition 5) that for r _> 4 the germ of the 

Lagrangian map A, X C  "-1 ~- T*C"---~C ~ at the nontransversality point x E {0} • C n - t  of the tangent Lagrangian space to 

A r • C n-1 and the fiber of the fibration T*C n ~ C n is not simple. 

The Lagrangian map A, X C "-~ ~- T* C"---~C" in the neighborhood of the transversality point of the tangent Lagrangian 

space to the fiber of the fibration is equivalent to the suspension of the Lagrangian map I2(r + 2) by Proposition 4. 

This proves the theorem for Lagrangian manifolds A r • C n-1 with r >_ 4. 

Let r = 1. Then the manifold A 1 • C n - t  = C n is nonsingular. The singularity theory of Lagrangian maps of nonsingular 

manifolds was constructed in [2]. By this theory, equivalence classes of  simple germs of Lagrangian maps of nonsingular 

manifolds are in a correspondence to simple R +-equivalence classes of germs of functions at a critical point [9]. The list of these 

classes, up to a stable R+-equivalence, is the following: 

A~, t i : > l :  x~+~; D~, p > 4 :  x2y+y~-l; 

Es: xs'+'Y4; El :  x3"-{-XY3; E8: xs-~-Y ~. 

R+-miniversal deformations of these functions are the generating families (see Sec. 4) of the Lagrangian maps corre- 

sponding to Coxeter groups At,, Dt,, Et,, respectively (see [2, 36, 43]). Simple germs of Lagrangian maps of nonsingular mani- 

folds are equivalent to their suspensions, and conversely. 

Let r = 2. Then the manifold A 2 x C n-1 is isomorphic to the union of two nonsingular n-dimensional manifolds 

intersecting without tangency along a nonsingular hypersurface in each of them. The singularity theory of Lagrangian maps of 

such manifolds was constructed in [40, 29]. Simple singularities in this theory correspond to simple germs of functions on a 

manifold with an edge or, equivalently, to simple germs of functions even in one of the variables. The latter are stably R +- 

equivalent to the germs at zero of the following functions even in x (see [3]): 

B~t, 1~>~2: x2~; C~, l~>f3: x2y+yV'; F4: x 4 + y  3. 

R+-miniversal deformations of these germs in the class of even functions are the generating families of the Lagrangian 

maps corresponding to the Coxeter groups Bt,, Ct`, F 4, respectively. The Lagrangian maps B~, and Ct` are equivalent (their 

equivalence interchanges the components of the Lagrangian manifold A 2 • CU-2). Simple germs of Lagrangian maps of the 

manifolds A 2 • Cu-2 are equivalent to the suspensions of Bt,, F 4, and conversely. 
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Let r = 3. The curve A 3 is isomorphic to the open swallowtail Xl(3 ). Simple singularities of the Lagrangian maps of the 

manifolds A 3 • C n-1 are equivalent to suspensions of the Lagrangian maps associated with the Coxeter groups l-I~ and converse- 

ly. This will be proved in Sec. 10, where we describe all the simple singularities of Lagrangian maps of open swallowtails. 

10. THE PROBLEM OF GOING PAST AN OBSTACLE 

In Sec. 6, we associated to the bundle of geodesics 7 on the boundary of an obstacle 0B C B the bundle of extremals in 

the problem of going past the obstacle which is formed by the tangents to y oriented by the geodesics on t3. The set of velocity 

unit vectors of the extremals in the bundle is the Lagrangian manifold A ~- T*B on the hypersurface (p, p) = 1. The set of 

characteristics of this hypersurface, the union of which is A, constitutes the ray system of the bundle ~, in the space of geodesics 

on B. Therefore, A is isomorphic to the product of the ray system and the straight line. 

The generating function of the Lagrangian map -% ~- T*B--+B is a multivalued function, on B whose values at the point 

q are the distances from q to the initial manifold of the bundle y along the extremals through q. We call this generating function 

the time function of the bundle of extremals in the problem of going past an obstacle. 

O. P. Shcherbak used generating families (see Sec. 4) to describe the singularities of the time function in the problem of 

going past an obstacle outside the caustic of the bundle Y on 0B, i.e., under the assumption that the manifold l C T*(0B) of the 

velocity unit vectors of the bundle y is projected in a single-valued manner on OB. 

Let F C 0B be the initial manifold of the geodesic bundle 7, T(x) the length of the geodesic bundle from F to x E @B, 

G(x, q) the distance from x to the point q 6 B along the joining geodesic in B (Fig. 5a). Under our assumption, ~o is a single- 

valued function, and F(x, q) = G(x, q) + T(x) is the generating family of the Lagrangian map A ~ T*B--~B. 
Shcherbak's results are based on the observation that all the critical points of the function F ( ' ,  q) are of even multiplici- 

ty. The proof is shown in Fig. 5b: to the extremal in general position corresponds an A 2 critical point of multiplicity 2; the 

multiplicity of a more complicated critical point (corresponding to a singular extremal) is equal to double the number of A 2 

points into which it decomposes under perturbation of the parameter q. 

Stable R+-equivalence of generating families induces an equivalence of the corresponding Lagrangian maps. Therefore, 

reduction to normal form of the Lagrangian map generated by the family F involves finding maximal subfamilies (with a 

nonsingular base) among R+-miniversal deformations of germs of even multiplicity of functions in which the critical points of all 

the functions are only of even multiplicity. Below we give a list of these deformations of simple germs of functions, as construct- 

ed by Shcherbak. 

Proposition 12 [31, 32, 10]. The maximal subfamilies with a nonsingular base of R+-miniversal deformations of simple 

germs of functions are exhausted, up to stable R+-equivalence, by the following: 
x 

~( c A2~) ~ (u ~ + qlu ~-2 + ... + q~_1) 2 du, 
0 

y 

f~(cD2,) S (t#-l+qlt#-3+"" +q~-3tt+x)2dtt+q~-~x2+q,-lX, 
o 

A3 (cE6) x3+-Y4-~-q~Y2-~ q2Y, 
A4 ( c E s )  x3%-g~+q,b~+q292+q.~Y, 

V 

H 4 ( ~ E s )  x~+ S (tt2+qlx + q2)2dtt+q3x" 
0 
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Remark 13. a) The miniversal deformation of a germ D~u contains another subfamily equivalent to Q~,. In cases E 6 and 

E 8 there are also subfamilies with a singular base, while in all other cases no such subfamilies exist. 

b) In the space of polynomials 

x2 '~-}-a lx2n- l+. . ,  q--a~,~ 

consider the submanifold Z n of polynomials with a root of multiplicity an  + 1. It is isomorphic to the product of the open 

swallowtail En_l(2n - 1) and the straight line and is Lagrangian relative to the symplectic structure introduced in 5.1. The 

fibrations (al . . . . .  ae~) ~ (ai . . . . .  a~) and (al . . . . .  a2n) ~ (al . . . . .  a~-l, a~+,) are Lagrangian and define Lagrangian maps 

of the manifold yn. It is easy to verify that these Lagrangian manifolds are equivalent to (the suspension of) E n and f2n+ 1, 

respectively. 

c) The families El, ~2, A3, A4 from Proposition 12 generate the Lagrangian maps A1, A2, A3, A 4 of nonsingular 

manifolds. It can be shown (see [31, 32]) that the families E2, Q3, H4 generate Lagrangian maps of the products of the semicubic 

parabola and a nonsingular manifold that correspond to the Coxeter groups H2, H3, H 4. 

THEOREM 15. The germs at zero of the Lagrangian maps 

~, (~t~3), f2, (~ t~4) ,  H, (ix=2, 3, 4) 

are simple and pairwise inequivalent. A simple germ at a singular point of the Lagrangian map of the product of the open 

swallowtail and a nonsingular manifold is equivalent to the suspension of one of the germs E~,, Q~, H/,. 

COROLLARY 1. Simple singularities of the time function in the problem of going past an obstacle are exhausted by the 

singularities of the generating functions of the Lagrangian maps A,, D,, E, ,  E,, f2.~, H, 

COROLLARY 2, A germ of a vector field transversal to the graph of the Lagrangian map St,, Q~,, H~, at zero is rectifi- 

able by the germ of a graph-preserving diffeomorphism. 

COROLLARY 3. The complements of complex bifurcation diagrams of the Lagrangian maps E~,, f~,, H~, are Eilen- 

berg--MacLane spaces of a subgroup of finite index in the group of braids of/~ strings. 

Examples. a) Graphs and bifurcation diagrams of -v 3 and H 3 are shown in Fig. 6a. The self-intersection of the graphs of 

E~, is nonreal. 

b) Figure 6b shows a family of fronts in the problem of going past an obstacle on the plane in the neighborhood of the 

inflection point. This family is equivalent to the family of sections of the graph H 3 by planes parallel to one of the coordinate 

planes. 
Remark 14. a) The adjacency diagram of simple germs of Lagrangian maps of open swallowtails has the form 

A4"Hz"- E3~ ~4"- ES . . . .  
\ \ ' , ,  \ 

A2---- H~---- Q4--'--- Qs . . . .  

\$L,__., 
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This follows from the similar adjacency diagram of simple even-multiplicity singularities of functions. 

b) The proof of Theorem 15 given below utilizes generating families of Lagrangian maps of open swallowtails. Their 

construction (see Proposition 13) is based on Proposition 10, where E~ germs are reduced to normal form. Our proof essentially 

relies on the computations of O. P. Shcherbak (Proposition 12). An alternative proof could be devised, independent of these 

computations and relying on the stability theorem (Theorem 3) and it corollary on the sufficient jet of a Lagrangian map. 

Proposition 13. The germ at zero of the Lagrangian map of the manifold Xk(2k + 1) • R n-k can be defined by the 

generating family 

F (x, Yl . . . . .  Y~-,, ql . . . . .  q~) 
x 

= ~ (u k+l + Q lu k-1 + . . .  + Qk) ~- d t t+  Qk+1 + Y~-q,+1 + . . .  + g~_,qn, 
0 

where s is equal to the rank of the projection of the tangent Lagrangian space to Xk(2k + 1) x R n-k at zero on the base of the 

fibration, qi are the coordinates on the base, and Qj are functions of (y, qI ..... qs) satisfying the conditions 

d0Qk+~-----0, d2oQ~+l=O, Q ] ( 0 ) = 0 ,  rk (OQ/O(y ,q ) )~-k .  

Proof. In appropriate Darboux coordinates on T*R n, the tangent Lagrangian space to Xk(2k + 1) • R n-k at zero is given 

by the equations Pl . . . . .  Ps = %+1 . . . . .  qn = 0. Consider the second Lagrangian fibration 

(P, q)~(ql  . . . . .  q,, P,+x . . . . .  P,,). 

By Proposition 10, the corresponding Lagrangian map is equivalent to the suspension of the standard map. The standard map is 

defined by the generating family Ek+ 1. Equivalence of Lagrangian maps acts on the generating family by replacement of parame- 

ters (coordinates on the base of the Lagrangian fibration) and addition of a function of these coordinates. Therefore the second 

Lagrangian map is defined by the generating family 
x 

F (x, ql . . . . .  q,, P~+I . . . . .  Pn)-'= .~ (ttk+l+ Q l u ~ - I + . .  �9 -J-Qk) ~ d u +  Qk~l, 
0 

where (ql . . . . .  q,, Ps+l . . . . .  Pn} ~'~ ( Q l , . . . ,  Qk) is a submersion and Qk+l is a function on the base of the second 

fibration. Since the tangential Lagrangian space to Xk(2k + 1) x R n-1 at zero is the zero section of the second fibration, then 

d0Qk+ 1 = 0 and d02Qk+ 1 = 0. Passing to the original Lagrangian fibration and setting Yi = Ps+i, we obtain the sought generat- 

ing family. 

Proof of Theorem 15. Let ~k (2k+ 1 ) R ~-~- ~- T* Rn-+R '~ be a stable Lagrangian map, L the tangent Lagrangian space to 

Yk(2k + 1) X R n-k at the point 2 E {0} • R n-k, and F the tangent space to the fiber of the fibration at this point. If F is 

transversal to L, then the germ of the Lagrangian map at the point 2 is equivalent to the suspension of Ek+ 1 (Proposition 10). 

Points where F is not transversal to L form in {0} • R n-k a subset X of codimension _>1. Let L 1 be the hyperplane in L tangent 

to the cusp edge of the manifold Xk(2k + 1) • R n-k at the point 2. Points where F is not transversal to L 1 form a subset Y C X 

of codimension >__2 in {0} • R n-k. We will show that the germ of a stable Lagrangian map at the point 2 ~ XW is equivalent to 

the suspension of ~2k+ 2. 
By Proposition 13, the germ of a Lagrangian map at the point 2 can be defined by the generating family 

P 

F (x, y, q) ~ f (ttk+t+ Ql t t k -~+""  + Q k)2dtt + Qk+~ + Qk+2x, (1) 
0 

where Qi = Qi( x, q), and Q ( 0 ) = 0 ,  d0Qk+l = 0 ,  d~Qk+l = 0 ,  Qk+2 (x, 0 ) - - 0  . Transversality of F to L 1 implies that dQk/ 
Ox Io = A =/= O. Hence it follows that F(x, y, 0) is a semiquasihomogeneous function with weights deg x = (k + 1)deg y and 

Y 

quasihomogeneous part i (t#+1+ Ax)2dtt" Therefore F(x, y, 0) has a D2k+4 + simple critical point at zero. The family F(x, y, q) 
0 

is a deformation of F(x, y, 0) in the class of functions with critical points of even multiplicity. Therefore (Proposition 12) the 

family F(x, y, q) is R+-equivalent to that induced from Qk+2: 
V 

0 
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Since F generates a stable Lagrangian map, the inducing map q ~ q may be regarded as a submersion. Thus, the germ of a 

Lagrange map at the point 2 is equivalent to the suspension of f2k+ 2. 

Let us now show that the germ of a stable Lagrangian manifold at the point ;t ~ Y is not simple for k _> 2. A dense set 

of codimension 2 in {0} x R n-k is formed in Y by the points where dim F A L = 1. For almost all such points, the germ of a 

Lagrangian map is defined by a generating family of the form (1), where 

OQh/Ox[ 0=0, O Q~,-~/Oxl o~o, B=OZQh+~/OxZlo4~o. 

We will show that at these points the degree of the Lagrangian map is mk + 4. Since germs of this type occur irremovably in the 

restrictions of the Lagrangian map to (k + 2)-dimensional submanifolds, the Lagrangian map at the point 2 is not simple 

(Proposition 5). 

Figure 7 shows Newton's diagrams of the functions F(x, y, 0) under the above assumptions and computes their Milnor 

g 
number/z using the formula of Kushnirenko [9]. Newton's diagram is determined by the highest order part .f (u TM +A ux)2du 

0 

q-Bx3/6 , of the function F(x, y, 0). 

The degree of a Lagrangian map is equal to the number of different critical points of a general member of the generat- 

ing family. Since the multiplicity of each such point is 2, the degree is kt/2, i.e., at least k + 4. 

Now let k = 1. At the points 2 ~ Y where dim F n L = 1, the germ of a Lagrangian map is defined by the generating 

family (here Q1, Q3 lie in the ideal (q)) 

Y 

(x, y, q)=f (tt2 q- Q1)2dtt + Q2q- Q3x, F (2) 
0 

Q2 -- Bx3(m~ x4, q)). We will show that the stable Lagrangian map defined by this generating family is equivalent to the 

suspension of H 4 if B ~ 0. 
The germ F(x, y, 0) =- ),5/5 + Bx3(mod(x4)) has an E 8 critical point. The gradient ideal of the germ F(x, y, 0) is generated 

by the monomials y4, x 2. By stability of the Lagrangian map, we may take 

where q ~ q  is a submersion, i.e., ql, q2, q3 may be regarded as independent parameters of the family. Moreover, linear (in q) 

terms of Q2 are divisible by x 2. Hence it follows that 

F ; ,  =-- 2xy~---ff-, --q,F* =__ 2Y~3 ' F~. ~ x (rood ( y 4  X 2, q)). (3) 

The monomials (3) are independent in the local algebra of singularity of F(x, y, 0). 
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Let us induce the family F from the R+-versal deformation of  the germ E 8. According to the above~ the inducing map 

of parameter spaces is an immersion to the subfamily of functions whose critical points are all of even multiplicity. The versal 

deformation of  the germ E 2 contains two analytic 3-parameter subfamilies with this property -- A 4 and H 4. Their tangent spaces 

differ at zero. The formulas (3) therefore make it possible to identify our generating family with a suspension of the standard 

family H 4. 

It remains to show that a germ of a Lagrangian map of the manifold Z1(3 ) x R n - i  is not simple at the point 2, where 

dim F f3 L _> 2, and also if B = 2 in the generating family (2). 

In the second case, the generating family (2) is a deformation of  the germ F(x, y, 0) E y5/5 + Ox 4 + (x 5) of  multiplicity 

~r >_ 12. In the first case, the generating family has the form 

Y 

(x ,  y, z ,  q) = ~ (It 2 -q- A x  -4- . . . )2  dtt + B z  3 + . . .  (4) F 
0 

Let A ~ 0, B r 0. Let deg y = 1/5, deg x = 2/5, deg z = 1/3. Clearly, for q = 0, the omitted terms in (4) have deg > 1. 

The principal part of  the function F(x, y, z, 0) is quasihomogeneous of deg = 1 and is the direct sum of a D6 + singularity, in the 

variables x, y and a A 2 singularity in the variable z. Therefore, the critical point of  the germ F(x, y ,  z, 0) is also of multiplicity 

12. 

Denote by Z c Y the set of points I at which the germ of a stable Lagrangian map is not of type H 4, The codimension 

of Z in {0} • R n - I  is 3. Therefore the points of Z occur irremovably in the restrictions of the Lagrangian map to 4-dimensional 

submanifolds. On the other hand, a dense set in Z is formed by the points of the two types considered above, at which the 

degree of  the Lagrangian map is 6. By Proposition 5, the germs of a Lagrangian map at points from Z are not simple. 

11. RAY SYSTEMS IN GENERAL POSITION, OPEN WHITNEY UMBRELLAS, 

AND THE TOPOLOGY OF LAGRANGIAN SURFACES 

ll.1. In the space with the coordinates (xr t .... , )-u,60,'-', fin) consider a submanifold of codimension 2 defined by the 

equations 

F=x'~+'W)~lx~- '  + . . . + L ~ = 0 ,  

G=8ox~ +6,x~-'q- . . . q-8~=O. 

The projection (x, ~, 6) ~ (L, 6) of this submanifold is the map R 2n ~ R 2n+l ,  called the Morin map. The image of the 

Morin map is called a generalized Whitney umbrella. For n = 1, this image is the surface in R 3 with the equation 312 = 602).1, 

i.e., an ordinary Whitney umbrella (Fig. 8a). The kernel of  the Morin map at singular points is one-dimensional and is generated 

by the vector 0/0x. It can be shown [38] that the singularities of corank 1 of the map R N ~ R N+I in general position are 

exhausted by the singularities of  Morin maps up to left-right equivalence and suspension. 

Denote by,.~ the subalgebra of the functions from OR,,,, whose derivative in the direction of the kernel of  the Morin 

map R 2n ~ R 2n+l vanishes at the singular points. The algebra ,~C is the algebra r 2~ of  regular functions of some analytic set 
A2n. 

Definition. The  manifolds A 2n are called open Whitney umbrellas. 

THEOREM 16. The open Whitney umbrella A 2n is isomorphic to the following manifolds: 
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1) the conormal fiber space of the open swallowtail Z n C R2n; 

2) the submanifold in the space of pairs of polynomials 

X2n:+l x2n : - i  _~_ . X~ 

F==(2n--'~- i" )~ ~-ql(2n_l)  l ..-~-q2n~-., 
.~2/Z--I J t ~1 X@ 

G - -  (--  1)2"p2~ ( 2 ~ ) I  ~ - " "  § t - -  t) p~ W'  

formed by pairs with a common root of multiplicity not lower than (n + 1, n), respectively; 

3) one of the two components of the Lagrangian manifold generated by the family of functions of x, 
X 

~ , ( x ,  q, Q) = I  (Q~-~q-  �9 �9 -}- Q~) (~=+~ + q~-x_+_. . .  + q , )  d~ 
0 

(the equation 5r x = 0 of the critical points of the family decomposes into two equations; the relevant component corresponds to 

the equation x n+l + ql xn-1 + ... + qn = 0). 

COROLLARY. An open Whitney umbrella is a Lagrangian manifold. 

Remark 15. a) The strata of singularities of the manifold A 2n form a flag of manifolds of even dimension (Fig. 8b). The 

2k-dimensional stratum is isomorphic to A 2k. 

b) (V. M. Zakalyukin) An open umbrella in the space of pairs of polynomials is Lagrangian relative to the symplectic 

structure ZdPi A dqi. This can be proved using a canonical symplectic structure in the cotangent fiber space of the space of binary 

forms of degree 2n + 1. 

c) The graph of the Lagrangian map generated by the family 5r t is the surface in R 3 with the equation 9u 2 + 4QlZq13 = 

0 (Fig. 8c). It was apparently first considered in [5, 30]. 

Proof of Theorem 16. 1 ~ The open swallowtail Zn(2n + 1) is Lagrangian in the polynomial space ~2,~+~. Therefore its 

conormal fibration is isomorphic to the fibration of tangent Lagrangian spaces. Using the parametrization 

r~: (a, b . . . .  ) ~ ( x - - a  "+~(x= +(n + l)ax"-l +bx=-~ 4-. ..) 

of the manifold Zn(2n + 1), we can easily show that the tangent space at the nonsingular point at(a, b, ...) consists of polynomials 

of degree 2n - 1 for which a is a root of multiplicity n. 

2 ~ Let P~=O~r,~/&Q, p~=O~',~/Oq~ and consider two maps (x, qt . . . . .  q,~-i) ~ (P, q) and (x, Q ) ~  (Q, P).  The 

image of the first map is the open swallowtail Zn(2n + 1) in the space of the polynomials F2n+l , and x is a root of multiplicity 

(n + 1) of the corresponding polynomial (see the lemma in the proof of Theorem 10). For a fixed x, the image of the second 

map consists of the polynomials G2n_ 1 for which x is a root of multiplicity n. 

,X 

3 ~ The generating family ~'n has the form I G' {~, Q) F (~, q) d~ (up to notation). On the normalization Z of the 
0 

corresponding Lagrangian manifold E, the functions (Q1,-", Qn,ql, "", qn-1 ,x) may be used as the coordinates. 
x 

LEMMA. 1) CY~ is the subspace ~L~ct7~ of functions of the form ((AF'--kBG') d~ + C, where A, B, C~tT~, 

OC/Ox = O. 

2) lY z is generated as a ~(Q,q)-module by the functions (1,p 1 ..... Pn,P1, "--, Pn)" 
Indeed, the inclusion tYzc~q~ is obvious. We will show that ~ is contained in the tTCQ.q)-module generated by 1,pj,Pj. 

DivideBbyF': B~-RF'  @ Di(Q, q) x n-i. Thefunction ~ (ND~n-~) O'dg liesinthe ~(o,qy-submodulegeneratedbyPp..., 
i ~ l  0 

x 

Pn" The function f (A-J-t~G')F'd~ + C lies in the tYCQ,q ) -submodule generated by 1,pl .... , Pn (by Theorem 10). 
0 
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4 ~ The map of  the normalization >2 defined by the functions (Qa, .--, Qn, ql, "", qn, Pn) is a Morin map. Its critical 

points satisfy the equations F'(x, q) = G'(x, q) = 0. Therefore the space :s ( ]g  is precisely the algebra of  regular functions 

on the open umbrella A 2n. By the above lemma, Y = A 2n. 

11.2. Let a nonsingular hypersurface H 2n+l be defined in the symplecfic space (M 2n+2, r Denote by N 2n the symplectic 

manifold of the characteristics of the hypersurface H. 

Definition. The initial manifold of  a ray system is the n-dimensional nonsingular isotropic manifold pa on the h~ersur-  

face H. The manifold A C N of the characteristics through e is called a ray system. 

In general, a ray system is a Lagrangian manifold in N. 

An initial manifold that belongs to a prespecified open dense subset in the space of embeddings l ~ H (not necessarily 

isotropic) will be called typical and its ray system will be called a ray system iv_ general position. 

THEOREM 17. A germ of a ray system in general position is symplectically isomorphic to a germ of an open Whitney 

umbrella. 

COROLLARY. Initial manifolds of  ray systems whose singularities are only open umbrellas and transversal intersections 

form an open set in the C~-topology of  the space of  all initial manifolds. 

Conjecture. This open set is dense in the space of initial manifolds. 

Remark 16. Ray systems usually arise as solutions of Hamilton--Jacobi equations. Such an equation is defined by the 

hypersurface H c T*B. The solution with the initial condition ~o: 013 ~ R, OB a hyq3ersurface in B, is constructed as follows. The 

initial manifold I is defined as the intersection with H of the Lagrangian manifold L of the covectors on B applied at the points 

of 0B which coincide with dT when restricted to 0B. The union of the H-characteristics through l is a Lagrangian manifold in 

T*B. The corresponding multivalued function is the solution of the Hamilton--Jacobi equation with the single-valued initial 

condition T- However, for 0B and T in general position, L intersects transversally with H. It can be shown that the ray system 

with the initial manifold l = L N H is an immersed Lagrangian manifold. Thus, open umbrellas do not arise as typical singulari- 

ties of ray systems in the Cauchy problem for the Hamilton--3acobi equation if the initial condition ~o is single-valued. This 

construction of  a ray system is in fact a particular case of the specification of a Lagrangian manifold using a generating family. 

We will show (see 11.4) that the open Whitney umbrella A 2n in itself, without extra components, cannot be defined at all by a 

generating family. 

Proof of Theorem 1Z In a local situation, we may regard H as a hyperplane in a linear space. Define the G~ussian map 

l --- G to the Grassmann manifold G of n-dimensional isotropic subspaces in H, associating to the point 2 ~ l the tangent space 

T tl. The following lemma is easily verified. 

LEMMA 1. The manifold G is nonsingular. Isotropic n-dimensional subspaces in H containing a characteristic direction 

form a nonsingular submanifold Y C G of  codimension 2. 

For a typical initial manifold l, the Gaussian map is transversal to E. The preimage of  E in l is the submanifold l' of 

codimension 2. qlm field of  directions tangential to l is defined at the points of l '  -- this ks the field v of  the kernels of the 

projection l~H--+N. Extend it to the field of  directions on the entire l. For a typical initial manifold, the projection of l '  along 

the integral curves of this field is a Morin map (it is easy to see that this property depends on v, and not on its extension). 

Therefore, the field v is reducible to the normal form 0/0x in the coordinates  (Zt . . . . .  ~,n-~, 60 . . . . .  /fk-~, x, y~ . . . . .  y,~-~n)- on 

I in which l' is defined by the equations xk~lxn-2q  - . . .  q-~,n-1-----60xh-I-q - . . .  -t-6~-~ = 0 .  Therefore the subalgebra ,.~r162 

of the functions whose derivative along v vanishes on l '  is isomorphic to the algebra O~A~• 

Let A be a ray system of the initial manifold L Then 6YA~3r For a typical i, this inclusion is an equality. Therefore A 

is diffeomorphic to the germ at zero of the manifold A 2k • D n-2k. 

Lemma 2 concludes the proof of the theorem. 

LEMMA 2. The symplectic structure w in which A 2k is Lagrangian is reducible to the normal form of Theorem 16.3. 

We will show that the 0-jet of  the form w is homotopic to the 0-jet of  the normal form _+w 0 in the class of 0-jets of 

symplectic structures that are zero on A 2k. This would imply L~mma 2 by the results of  Sec. 1 and the fact that the structures 

__+_w 0 are transformed one into another by quasihomogeneous stretchings. 

Define a quasihomogeneous structure in the space R 4k D A 2k, setting deg q~ = deg Q~ = i +  1, deg p~ = deg P,-~ 2k q- 

2--i. The manifold A 2k is quasihomogeneous and Lagrangian in the symplectic structure 0~0=E (dp~/~dq~q-dP~Ad(20 of 

degree 2k + 3. On the other hand, A 2k is the conormal fiber space of  the open swallowtail yk C R zk. Let r =Y, dP~/~dq, be a 

quasihomogeneous symplectic 2-form in R 2k in which E k is Lagrangian. Then 090 + 2~o 1 is a quasihomogeneous symplectic 

structure in R 4k = T*R 2k which is zero on A 2k. 
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Let ~ be the space of 0-jets of closed 2-forms in R 4k that are zero on  A 2k, . ~  ~-- e . ~ d  . its quasihomogeneous gradation. 
d 

To prove the lemma, it suffices to show that L ~ d = 0 .  for d < 2 k  + 3 ,  -o~2k,a----- ( %,  cot) . On the normalization of the 

manifold A 2k we have in the coordinates (x, ql ..... qk-V Q1 ..... Qk) (taking Pk+l ~ qk ) 

dP i /~ dq I ~ qk_lxk+l-idx A dq I + . . .  
dpi Adq  1 ~  Qkxk-ldx A d q  I + . . .  (J < le) 

dP i/~ dQ j ~ qk_lxk+l-ldx A dQ j + . . .  (1) 

d p l A d Q j ~ Q k x k _ l d x A d Q l + . .  " (]-.<k) 

The monomials in the left-hand side are of degree 2k + 3 + j - i. It is easy to verify that for i > j the monomials in the 

right-hand side do not cancel with anything in Q2(A2k), because deg Pa >- k + 1, deg p~ >__ k + 2. Therefore the space of 2-forms 

generated by the monomials in the left-hand side and the monomials L dq~Adq5 (i, i<k), dq~AdQ~ (i<le), dQ,/~dQj, is 

disjoint with f~. 

Thus, ffd = 0 for d < 2k + 3. For the same reasons, the space ~2k+3 does not contain linear combinations of the 2- 

forms dpi A dQj. For the remaining 2-forms (1) with i = j, the monomials in the right-hand side occur in expansions of forms 

from f22(2 2k) precisely one more time -- in expansions of the form dP k ^ dqk or dpk ^ d%. Therefore, dim ~2k+3 = 2. 

11.3. Consider the generating family of the functions of x 

x 
~[t~n+l = S (~n+l _Af_ ql~rt-I  ..~ . . . .31_ qn)(~k + Ql~k-~ + . . .  + Qk) d~, rt > k. 

0 

It is easy to verify that one of the two components of the Lagrangian manifold generated by this family (specifically, the 

component corresponding to the roots of the equation x n+l + ql xn-1 + ... + qn = 0) is isomorphic to the product of the open 

Whitney umbrella A 2k and a nonsingular (n - k)-dimensional manifold. Denote the germ at zero of its Lagrangian map to the (q, 

Q)-space by Sn+lk. The Lagrangian map Sn+l ~ is equivalent to An+ 1. The Lagrangian map of the manifold A 2n described by 

Theorem 16.3 is equivalent to Sn+l n. 

THEOREM 18. 1) The Lagrangian maps Sn+l k are simple. 

2) The Lagrangian map in general position of the open Whitney umbrella A 2n is equivalent in the neighborhood of the 

origin to the germ Sn+l  n. 

Proof. The lemma in the proof  of Theorem 16 implies versality of the Lagrangian map Sn+ln. It is therefore stable. We 

similarly check stability of  the germs Sn+l k for k < n. In the coordinates (x, ql .. . . .  qn-1, Q1, "", Qk) on the normalization of the 
x 

~ f Lagrangian manifold generated by the family ~n+~ = Fn+tGkdg, the equations F'(x) = F"(x) . . . . .  F(S)(x) = 0 define the 

stratum of As+l singularities of the Lagrangian map Sn+l k, and the equations F'(x) . . . . .  F(r)(x) = G(x) = ... = G(r- t)(x)  = 

0 define the stratum of singularities of codimension 2r of the kagrangian manifold being mapped. Hence follows the adjacency 

diagram of the classes of the stable equivalence Ss+lr (Fig. 9) and its simplicity. 

Let us now prove part  2 of the theorem. 

The germ Sn+l n has a sufficient 1-jet by Corollary 2 of Theorem 3. Therefore, it suffices to verify that almost all 

Lagrangian spaces applied at the origin are transformed one into another by symplectomorphisms preserving A 2n. Consider the 

action on a Lagrangian Grassmannian of the group of the linear parts of these symplectomorphisms. The tangent space to the 

Lagrangian Grassmannian at a point is identified with the space of quadratic forms on the Lagrangian space corresponding to 

this point. The velocity vector of the flow defined by a quadratic Hamiltonian is the Hamiltonian restriction to this Lagrangian 
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Fig. 10 

space. By versality of Lagrangian map Sn+l n, for every i, j = 1,..., 2n there exists a Hamiltonian p~p~--F,a~] (q)p~--b,j(q), 
whose flow preserves A 2n. Comparing the quasihomogeneous degrees of the terms, we easily verify that a t f dm,  b~j~m ~. There- 

fore, the quadratic parts of  the Hamiltonians vanish on the subspace p - l ( 0 )  and form in the Lie algebra of quadratic Hamilton- 

ians a stationary subalgebra of  this subspace. The sought proposition now follows from the fact that a stationary subgroup of a 

Lagrangian subspace acts transitively on the set of Lagrangian spaces transversal to this subspace. 

Remark 17. a) Lagrangian maps generated by the families 5r '~  (for any k, n) were first studied by Zakalyukin [23]. He 

examined a Lagrangian manifold consisting of two components A2d•  n+~-1-2~ and A 2~e-1) ;>(l~ "+~+I-2~, d = m i n  (n, k) .  

Applying Theorem 3, we can easily show that the Lagrangian maps of these manifolds generated by the families 8 r ,  a are simple 

at least on the formal series level. 

b) For k > 0, the graphs of the Lagrangian maps Sn+lk are called folded Whitney umbrellas (for k = 0, these are 

generalized swallowtails). The simplest of them ($21) is shown in Fig. 8c. We still do not know if the list {Sn+I k} of simple 

classes of Lagrangian maps of the manifolds A 2k x D is complete. 

c) The Lagrangian map Sn+l k to a (n + k)-dimensional space is of degree n + 1 and multiplicity n + k + 1. Therefore, 

Theorems 4 and 5 are inapplicable to this map for k > 0. Nevertheless, the complement of the complex bifurcation diagram of 

the germ $21 is the Eilenberg--MacLane space of the group Z @ Z. Theorem 6 is also applicable to the Lagrangian maps Sn+I k. 

Therefore a vector field transversal to a folded Whitney umbrella at the origin is rectifiable by a local umbrella-preserving 

diffeomorphism. 

11.4. The map i: l 2 --, (M 4, co) of a surface in a symplectic manifold is called isotropic if i'co = 0. An isotropic map for 

which all the singularities of the image A = i(l) are open Whitney umbrellas and transversal self-intersections will be called a 

Lagrangian imbedding. In the space of isotropic maps of a closed surface, Lagrangian imbeddings form an open (Theorem 17) 

nonempty (see [20]) and apparently dense subset. Note that a Lagrangian imbedding in the neighborhood of a singular point of 

an open umbrella is a homeomorphism on its image. Lagrangian imbeddings without self-intersection points of all closed 

surfaces with Euler characteristic % -<- - 2  into the standard symplectic space R 4 were described in [20]. 

For the Lagrangian imbedding i: l 2 ~ (M 4, co) of a closed surface we have the equality (modulo 2 for a nonorientable/) 

[201 

l.l=Z(t) +2 ~+~,, (2) 

where I �9 l is the self-intersection index of the fundamental cycle i.[/] in H2(M), Z is the Euler characteristic of  the surface, x is 

the number of self-intersection points (counting the signs as determined by the orientation o f / ) ,  2 is the number of open 

umbrellas A 2. A similar formula for immersions ()l = 0) is well known. From this formula it follows, for example, that surfaces 

with odd Z cannot be Lagrangian-immersed in R 4. 

It is interesting to trace the effect of  the singularities of A 2 on the self-intersection points of  exact Lagrangian imbed- 

dings (see Sec. 2). Gromov's  theory on the existence of self-intersection points for exact immersio,ls is apparently also true for 

exact imbeddings. According to the general philosophy of symplectic topology, the number of self-intersection points of a closed 

manifold exactly immersed in T*R n is not less than half the number of  critical points that a Morse function can have as a 

minimum on this manifold. Figure 10 is the graph of the Lagrangian map A ~ T*R~--~-R 2 of an exactly imbedded Klein bottle 

with 2 = 2 and = 1 (from the previous considerations, we should have u _> 2). Analysis of such examples creates the impression 

that singular points of a Lagrangian imbedding may "swallow" the saddle points, without "touching" the maxima and the minima 

of a function. 

To the singular point A 2 of an oriented Lagrangian-imbedded surface we associate the sign of the Maslov index of the 

closed curve going around the singular point in the positive direction. This index equals +2  depending on the orientation, which 

is easily calculated from Fig. 8c. Hence it follows that on a closed oriented surface Lagrangian-imbedded in R 4, the number of 
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positive open umbrellas is equal to the number of negative open umbrellas. It is remarkable that both make a positive contribu- 

tion to the form (2). 

On a Lagrangian manifold defined by a generating family, the Maslov index of a closed curve not passing through the 

singularities of the manifold is defined and equal to zero. Hence it follows that the open umbrella A 2n cannot be defined by a 

generating family. 

APPENDIX 

1. Versality Theorem for Semiforms on the Straight Line 

THEOREM [19]. The analytic family of forms F(x, 2)(dx) a, where a = l/k, k E N, and the germ at zero of the function 

F ( ' ,  0) is R-equivalent to +_x~ +1, is representable as F0(X, 2)(dx) a in appropriate local analytic coordinates X = X(x, Jl), A = 

A(2), where 

F o (X, A) = • (X ~+1 + A1X ~-I + . . .  + A,O- 
.Ir 

Proof. The family of functions O (x, ~,) = ~ F a (~, ~,) d~ may be regarded as a deformation of the germ at zero o f  the 
X 0 

function O (x, 0) ----- j" F k ([, 0) d [  of multiplicity k(~ + 1). By the versality theorem for functions [9], it is R +-equivalent to the 
0 

family induced from the R+-versal deformation 

X 

H = _+ S (~ko,+~) + A2~ko,+l ) -2+. . .  + A~o,+,) d~ 
0 

of such a germ. The image of the inducing map L ~  A lies in the space of parameter values for which the critical points of the 
X 

function H ( ' ,  A) are of multiplicity >_k. In the analytic case, this space consists of polynomials of the form G 0---- 3 F~ (~, A) d~, 
0 

and the map A ~ . 4  is a diffeomorphism on its image. Therefore the family of functions G is R+-equivalent to that induced from 

Go, and the family of 1-forms Fk(x, Jl)dx is R-equivalent to that induced from F0k(x, A)dX. 

Remark. We have used this theorem with a = 1/2 several times. Kostov [24] and Lando [25] generalized it to the case of 

arbitrary degrees of volume forms. The theorem also holds in the Coo-category (Kostov--Lando, and independently V. V. 

Lychagin). 

2. All Real Analytic Results of the Paper Hold in the C| We used analyticity in the following cases. 

a) In the definition of the singular Lagrangian (Legendrian) manifold we assume that the nonsingular points are dense 

in an analytic manifold. 

b) In the definition of the degree of the Lagrangian map as the number of its complex sheets and in the nonsimplicity 

criterion associated with this concept (Proposition 5). 

c) In the proof of Theorem 15 for the reduction of Lagrangian maps to the normal forms f2~,, H~,. 

d) In the proof of the versality theorem for semiforms. 

In the smooth case, the definition of Lagrangian and Legendrian manifolds should be sharpened by considering, e.g., 

only sets that are diffeomorphic to analytical sets. After this modification, the proofs of all general theorem carry over verbatim 

to the Coo-category. In partic,dar, this relates to the sufficient jet theorem (corollaries of Theorem 3). The degree of a stable 

Lagrangian map can be defined as the degree of its sufficient jet. Therefore the criterion of nonsimplicity of a Lagrangian map 

remains valid in the smooth case also. Reduction of smooth Lagrangian maps to normal forms is converted to the analytic case 

by Corollary 3 of Theorem 3. The versality theorem for semiforms is also true in the Coo-category, as we have noted in Appen- 

dix 1. 

Remark. The Weierstrass preparation theorem, which has been repeatedly applied in the C~176 is replaced with the 

Weierstrass--Malgrange theorem [9]. However, the function expansions used in the proof of Theorem 4 on vector fields may be 

multivalued in the smooth case. Therefore, the above does not apply to Theorem 4 in the holomorphic category. This theorem 

is also valid in the real analytic case, but in general it is not true in the C'-category (see [22, 27]). 
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