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Let (M, f,G) be a manifold, a function and a Riemann metric on the
manifold. Topologists would use these data in order to analyze the manifold
by means of Morse theory, that is by studying the dynamical system ẋ =
±∇f . Many recent applications of physics to topology are based on another
point of view suggested in E. Witten’s paper Supersymmetry and Morse
theory J. Diff. Geom. (1982).

Given the data (M, f,G), physicists introduce some super-lagrangian
whose bosonic part reads

S{x} =
1

2

∫ ∞

−∞

(‖ẋ‖2 + ‖∇xf‖2)dt

and try to make sense of the Feynman path integral
∫

eiS{x}/~D{x} .

Quasi-classical approximation to the path integral reduces the problem to
studying the functional S near its critical points, that is solutions to the
2-nd order Euler-Lagrange equations schematically written as

(1) ẍ = f ′′∇f .

However a fixed point localization theorem in super-geometry allows further
reduction of the problem to a neighborhood of those critical points which are
fixed points of some super-symmetry built into the formalism. The invariant
critical points turn out to be solutions of the 1-st order equation

(2) ẋ = ±∇f
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studied in the Morse theory.
Two examples:

– Let M be the space of connections on a vector bundle over a compact
3-dimensional manifold X and f = CS be the Chern-Simons functional.
Then (1) is the Yang-Mills equation on the 4-manifold X ×R, and (2) is the
(anti-)selfduality equation. Solutions of the anti-selfduality equation (called
instantons) on X × R are involved into the construction of Floer homology
theory in the context of low-dimensional topology.
– Let M be the loop space LX of a compact symplectic manifold X and f be
the action functional. Then (1) is the equation of harmonic maps S1×R → X
(with respect to an almost Kähler metric) and (2) is the Cauchy-Riemann
equation. Solutions to the Cauchy-Riemann equation (that is holomorphic
cylinders in X) participate in the construction of Floer homology in the
context of symplectic topology.

In both examples the points in M are actually fields, and both Yang-Mills
and Cauchy-Riemann equations admit attractive generalizations to space-
times (of dimensions 3 + 1 and 1 + 1 respectively) more sophisticated then
the cylinders. It is useful however to have in mind that the corresponding
field theory has a Morse theory somewhere in the background.

In the lectures we will be concerned about the second example. Let us
mention here a few milestones of symplectic topology.
– In 1965 V. Arnold conjectured that a hamiltonian transformation of a com-
pact symplectic manifold X has fixed points — as many as critical points of
some function on X.
– In 1983 C. Conley & E. Zehnder confirmed the conjecture for symplectic tori
R2n/Z2n. In fact they noticed that fixed points of a hamiltonian transforma-
tion correspond to critical points of the action functional

∮

pdq−H(p, q, t)dt
on the loop space LX due to the Least Action Principle of hamiltonian me-
chanics, and thus reduced the problem to Morse theory for action functionals
on loop spaces.
– In 1985 M. Gromov introduced the technique of Cauchy-Riemann equations
into symplectic topology and suggested to construct invariants of symplectic
manifolds as bordism invariants of spaces of pseudo-holomorphic curves.
– In 1987 A. Floer invented an adequate algebraic-topological tool for Morse
theory of action functionals — Floer homology — and proved Arnold’s con-
jecture for some class of symplectic manifolds. In fact there are two types of
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inequalities in Morse theory: the Morse inequality

#(critical points) ≥ Betty sum (X)

which uses additive homology theory and applies to functions with non-
degenerate critical points, and the Lusternik-Shnirelman inequality

#(critical levels) > cup-length (X)

which applies to functions with isolates critical points of arbitrary complexity
and requires a multiplicative structure.
– Such a multiplicative structure introduced by Floer in 1989 and called now
the quantum cup-product can be understood as a convolution multiplication
in Floer homology induced by composition of loops LX × LX → LX. It
arises every time when a Lusternik-Shnirelman-type estimate for fixed points
of hamiltonian transformations is proved. For instance, the 1984 paper by
B. Fortune & A. Weinstein implicitly computes the quantum cup-product
for complex projective spaces, and the pioneer paper by Conley & Zehnder
also uses the quantum cup-product (which is virtually unnoticeable since for
symplectic tori it coincides with the ordinary cup-product).
– The name “quantum cohomology” and the construction of the quantum
cup-product in the spirit of enumerative algebraic geometry were suggested
in 1989 by E. Witten and motivated by ideas of 1+1-dimensional conformal
field theory. Witten showed that various enumerative invariants proposed by
Gromov in order to distinguish symplectic structures actually obey numer-
ous universal identities — to regrets of symplectic topologists and benefits
of algebraic geometers.
– Several remarkable applications of such identities to enumeration of holo-
morphic curves and especially the so called mirror conjecture inspired an
algebraic - geometrical approach to Gromov - Witten invariants, namely —
Kontsevich’s project (1994) of stable maps. The successful completion of the
project in 1996 by several (groups of) authors (K. Behrend, B. Fantechi, J.
Li & G. Tian, Y. Ruan,...) and the proof of the Arnold-Morse inequality
in general symplectic manifolds (K. Fukaya & K. Ono, 1996) based on simi-
lar ideas make intersection theory in moduli spaces of stable maps the most
efficient technique in symplectic topology.

Exercise. Let z = p + iq be a complex variable and z(t) =
∑

k∈Z
zk exp ikt be the

Fourier series of a periodic function. Show that the symplectic area
∮

pdq is the indefinite
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quadratic form
∮

pdq = π
∑

k|zk|2 on the loop space LC. Deduce that gluing Morse cell
complexes from unstable disks of critical points in the case of action functionals on loop
spaces LX would give rise to contractible topological spaces. (This exercise shows that
Morse-Floer theory has to deal with cycles of infinite dimension and codimension rather
then with usual homotopy invariants of loop spaces.)

1 Moduli spaces of stable maps

Example: quantum cohomology of complex projective spaces. In
quantum cohomology theory it is convenient to think of cup-product opera-
tion on cohomology in Poincare-dual terms of intersection of cycles. In these
terms the fundamental cycle represents the unit element 1 inH∗(CP n), a pro-
jective hyperplane represents the generator p ∈ H2(CP n), intersection of two
hyperplanes represents the generator p2 ∈ H4(CP n), and so on. Finally, the
intersection point of n generic hyperplanes corresponds to pn ∈ H2n(CP n)
and one more intersection with p is empty so that H∗(CP n) = Q[p]/(pn+1) 1

.

Exercise. Check that the Poincare intersection pairing 〈·, ·〉 is given by the formula

∫

[CPn ]

φ ∧ ψ =
1

2πi

∮

φ(p)ψ(p)
dp

pn+1
.

The structural constants 〈a∪ b, c〉 of cup-product count the number of in-
tersections of the cycles a, b, c in general position (taken with signs prescribed
by orientations).

The structural constants 〈a ◦ b, c〉 of the quantum cup-product count the
number of holomorphic spheres CP 1 → CP n passing by the points 0, 1,∞
through the generic cycles a, b, c. In our example they are given by the
formulas

〈pk ∪ pl, pm〉 =







q0 if k + l +m = n
q1 if k + l +m = 2n + 1
0 otherwise

.

The first row corresponds to degree 0 holomorphic spheres which are simply
points in the intersection of the three cycles. The second row corresponds

1We will always assume that coefficient ring is Q unless another choice is specified
explicitly.
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to straight lines: all lines connecting projective subspaces pk and pm form
a projective subspace of dimension n − k + n −m + 1 = l which meets the
subspace pl of codimension l at one point. The degree 1 of straight lines in
CP n is indicated by the exponent in q1. In general the monomial qd stands
for contributions of degree d spheres.

Exercise. Check that higher degree spheres do not contribute to the structural con-
stants 〈pk ◦ pl, pm〉 for dimensional reasons. Verify that the above structural constants
indeed define an associative commutative multiplication ◦ on H∗(CP n) and that the gen-
erator p of the quantum cohomology algebra of QH∗(CP n) satisfies the relation pn+1 = q.
Show that the evaluation of cohomology classes from Q[p, q]/(pn+1−q) on the fundamental
cycle can be written in the residue form

∫

[CPn]

φ(p, q) =
1

2πi

∮

φ(p, q)dp

pn+1 − q
.

As we shell see, the relation pn+1 = q expresses the following enumerative
recursion relation:
the number of degree d holomorphic spheres passing by given marked points
0, 1, ..., n, n+1, ..., N through the given generic cycles p, p, ..., p, a, ..., b equals
the number of degree d− 1 spheres passing by the points n+ 1, ..., N through
a, ..., b.
Thus the very existence of the quantum cohomology algebra has serious enu-
merative consequences.

A rigorous construction of quantum cohomology algebras is based on the
concept of stable maps introduced by M. Kontsevich.

Stable maps. Let (Σ, ǫ) be a compact connected complex curve Σ with
at most double singular points and an ordered k-tuple ǫ = (ǫ1, ..., ǫk) of
distinct non-singular marked points. Two holomorphic maps f : (Σ, ǫ) → X
and f ′ : (Σ′, ǫ′) → X to an (almost) Kähler manifold X are called equivalent
if there exists an isomorphism φ : (Σ, ǫ) → (Σ′, ǫ′) such that its composition
with f ′ equals f . A holomorphic map f : (Σ, ǫ) → X is called stable if it has
no non-trivial infinitesimal automorphisms.

Examples. (a) The constant map of an elliptic curve with no marked
points is unstable since translations on the curve are automorphisms of the
map.

(b) The constant map of CP 1 with< 3 marked points is unstable since the
group of fractional linear transformations of CP 1 is 3-dimensional. Similarly,
if Σ has CP 1 as an irreducible component carrying < 3 special (= marked
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or singular) points, and the map f is constant on this component, then f is
unstable.

Exercise. Prove that any other map is stable.

The arithmetical genus g(Σ) is defined as the dimension of the cohomology
space H1(Σ,OΣ) of the curve with coefficients in the sheaf of holomorphic
functions. The genus 0 curves (called rational) are in fact bunches of CP 1’s
connected by the double points in a tree-like manner.

Exercise. Express the arithmetical genus of Σ via Euler characteristics of its irre-
ducible components and the Euler characteristic of the graph whose vertices correspond
to the components and edges — to the double points.

The degree d of the map f is defined as the total sum of the homology
classes represented in X by the fundamental cycles of the components. Thus
the degree is an element in the lattice H2(X,Z). The example of the degree
2 rational curve in CP 2 given by the affine equation xy = const which de-
generates to the union of two straight lines when const = 0 illustrates the
general rule: irreducible holomorphic curves can degenerate to reducible ones
but in the limit the genus and degree are conserved.

The set of equivalence classes of stable maps to X with fixed arithmetical
genus g, fixed number k of marked points and fixed degree d can be provided
with a natural structure of a compact topological space (due to Gromov’s
compactness theorem) and is called the moduli space of stable maps. We will
denote Xk,d the genus 0 moduli spaces (and will mostly avoid higher genus
moduli spaces throughout the text).

Examples. (a) Let X be a point. Then the moduli spaces are Deligne-
Mumford compactifications Mg,k of the moduli spaces of complex structures
on the sphere with g handles and k marked points. The spaces M1,0 and
M0,k with k < 3 are empty. M0,3 is a point (why?). A generic point in
M0,4 represents the cross-ratio λ of the ordered 4-tuple (0, 1,∞, λ) of distinct
marked points in CP 1. Of course, the Deligne-Mumford compactification
restores the forbidden values λ = 0, 1,∞ so that M0,4 ≃ CP 1. These values
however correspond to the 3 ways of splitting 4 marked points into two pairs
to be positioned on the 2 components of Σ = CP 1 ∪ CP 1 intersecting at a
double point.

(b) The moduli spaces Xn,0 of constant maps are the products X ×M0,k

(empty for k < 3).
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(c) The grassmannian CG(2, n + 1) of straight lines in CP n is compact
and thus coincides with CP n

0,1.

Exercises. (a) Identify M0,5 with the blow-up of CP 2 at 4 points.
(b) Show that the moduli space of rational maps to CP 1 × CP 1 of degree d = (1, 1)

with no marked points is isomorphic to CP 3. Is it the same as CP 1
1,3?

(c) How many points in CP 3
0,4 represent stable maps with the image consisting of 4

distinct straight lines passing through the same point?

Evaluation of a stable map f : (Σ, ǫ) at the marked points (ǫ1, ..., ǫk)
defines the maps ev = (ev1, ..., evk) : Xk,d → Xk. Forgetting the marked
point ǫi gives rise to tautological maps fti : Xk+1,d → Xk,d as well as forgetting
the map f corresponds to the map Xk,d → M0,k called contraction. One
should have in mind that forgetting f or a marked point can break the
stability condition. The actual construction of forgetting and contraction
maps involves contracting of all the irreducible components of Σ which has
become unstable.

For example, consider the fiber of ftk+1 : Xk+1,d → Xk,d over the point
represented by f : (Σ, ǫ1, ..., ǫk) → X. A point in the fiber corresponds to a
choice of one more marked point on Σ. Any choice will give rise to a stable
map unless the point is singular or marked in Σ. However in the case of the
choice ǫk+1 = ǫi one can modify Σ by an extra component CP 1 intersecting
Σ at this point, carrying both ǫk+1 and ǫi and extend f to this component as
the constant map. Similarly, in the case of a singular choice one can disjoin
the branches of Σ intersecting at this point and connect them with an extra-
component CP 1 carrying the marked point ǫk+1. Both modifications give
rise to stable maps. Now it is easy to see that the fiber of ftk+1 is isomorphic
to (Σ, ǫ) (factorized by the finite group Aut(f) of automorphisms of the
map f if they exist). In particular the map ftk+1 has k canonical sections
(ǫ1, ..., ǫk) : Xk,d → Xk+1,d defined by the marked points in Σ. Moreover, the
evaluation map evk+1 : Xk+1,d → X restricted to the fiber defines on (Σ, ǫ) a
map equivalent to f . Thus the diagram defined by the projection ftk+1, by
the map evk+1 to X and by the sections ǫi can be interpreted as the universal
degree d stable map to X with k universal marked points (ǫ1, ..., ǫk).

Suppose now that X is a homogeneous Kähler space (such as projective
spaces, grassmannians, ..., flag manifolds). Then (see M.Kontsevich (1994)
and K. Behrend & Yu. Manin (1996) ) the moduli space Xk,d has a natu-
ral structure of a complex orbifold (= local quotients of manifolds by finite
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groups) of complex dimension

dimXk,d = dimX + (c1(TX), d) − 3 + k.

Here (c1(TX), d) denotes the value of the 1-st Chern class of the tangent bun-
dle TX on the homology class d, and the formula follows from the Riemann-
Roch theorem on Σ which allows to compute the dimension of the infinitesi-
mal variation space of holomorphic maps CP 1 → X.

The topology of orbifolds is similar to that of manifolds. In particular
one can develop Poincare duality theory and intersection theory inXk,d using
the fundamental cycle of the orbifold which is defined at least over Q.

For general X the moduli spaces can have singularities and components
of different dimensions. Nevertheless one can define in the moduli space a
rational homology class (called the virtual fundamental cycle, see for instance
J. Li & G. Tian (1996)) which has the Riemann-Roch dimension and allows
to build intersection theory with the same nice properties as in the case of
homogeneous Kähler spaces. The initial point in the definition of the virtual
fundamental cycle is to understand that singularities of the moduli spaces
mean irregularity of the zero value of the Cauchy-Riemann equation selecting
holomorphic maps among all smooth maps. The cycle is to have the same
properties as if the Cauchy-Riemann equations were made regular by bringing
“everything” (including the almost complex structure) into general position.

Exercises. (a) Suppose that all fibers of a holomorphic vector bundle V over a
rational curve Σ are spanned by global holomorphic sections. Prove that H1(Σ, V ) = 0
and find the dimension of H0(Σ, V ). Describe the tangent space at the point [f ] to (the
Aut(f)-covering of the orbifold ) Xk,d for homogeneous X.

(b) Consider the space X of constant stable maps to X of a given elliptic curve E with
one marked point as a subspace in the space of all smooth maps. Check that 0 is irregular
value of the Cauchy-Riemann equation linearized along a constant map and show that the
virtual fundamental class should have dimension 0 and be equal to the Euler characteristic
of X.

2 Gromov-Witten invariants

Structural constants of the quantum cup-product on H∗(X) are defined by

〈a ◦ b, c〉 :=
∑

d

qd1
1 ...q

dr

r

∫

[X3,d ]

ev∗
1(a) ∧ ev∗

2(b) ∧ ev∗
3(c) ,
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where (d1, ..., dr) is the coordinate expression of the degree d in a basis of
the lattice H2(X,Z) (which we assume isomorphic to Zr), the integral means
evaluation of a cohomology class on the virtual fundamental cycle, and a, b, c
are arbitrary cohomology classes of X.

Exercises. (a) Show that symplectic area of a holomorphic curve in (almost) Kähler
manifold is positive. Deduce that the semigroup  L ⊂ H2(X,Z) of degrees of compact
holomorphic curves fits some integer simplicial cone in the lattice at least in the case of
Kähler manifolds with H2(X) spanned by Kähler classes. (In fact the same is true for
generic almost Kähler structures and therefore — for any almost Kähler X if  L means the
semigroup spanned by those degrees which actually contribute to the structural constants.)
Conclude from this that the structural constants are (at worst) formal power series in
q1, ..., qr with respect to an appropriate basis in the lattice H2(X).

(b) Make precise sense of the statement that QH∗(X) is a q-deformation of H∗(X).
(c) Prove that the quantum cup-product ◦ respects the following grading onH∗(X,Q[[q]]):

cohomology classes of X are assigned their usual degrees divided by 2 since we want to
count dimensions of cycles in “complex” units, and the parameters qi are assigned the
degrees in accordance with the rule deg qd = (c1(TX), d).

One can define more general Gromov-Witten invariants

〈a1, ..., ak〉d :=

∫

[Xk,d]

ev∗
1(a1) ∧ ... ∧ ev∗

k(ak)

which have the meaning of
the number of degree d holomorphic spheres in X passing through generic
cycles Poincare-dual to the classes a1, ..., ak.

Notice that the configuration of points mapped to the cycles is not spec-
ified, and thus the invariants differ from those which participate in our in-
terpretation of the relation pn+1 = q in QH∗(CP n). In order to fix the con-
figuration one should use the fundamental cycle [ct−1(pt)] of a fiber of the
contraction map ct : Xk,d → M0,k. More generally, let A be a cohomology
class in M0,k. The GW-invariant

A〈a1, ..., ak〉d :=

∫

[Xk,d]

ct∗(A) ∧ ev∗
1(a1) ∧ ... ∧ ev∗

k(ak)

has the enumerative meaning of
the number of pairs — a degree d map CP 1 → X, a configuration — such
that the configuration belongs to a cycle Poincare-dual to A and the map send
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it to the given cycles in X.

One can do even better. Consider the section ǫi : Xk,d → Xk+1,d defined
by the universal marked point. The conormal line bundle to the section
pulled back to Xk,d by the section itself will be called the universal cotangent
line to the universal curve at the i-th marked point (why?). Thus we have k
tautological line bundles overXk,d and we denote c(1), ..., c(k) their 1-st Chern
classes.

Let T (c) = t0 + t1c + t2c
2 + ... be a polynomial in one variable c with

coefficients ti ∈ H∗(X). Given k such polynomials T (1), ..., T (k), we can
introduce the GW-invariants (called gravitational descendents)

A〈T (1), ..., T (k)〉d :=

∫

[Xk,d ]

ct∗(A) ∧ ev∗
1 T

(1)(c(1)) ∧ ... ∧ ev∗
k T

(k)(c(k))

whose enumerative meaning is not so obvious (see however Exercise (b) be-
low).

Exercises. (a) Let G be a compact Lie group. Equivariant cohomology H∗
G(M) of

a G-space M is defined as the cohomology H∗(MG) of the homotopy quotient MG :=
(M × EG)/G and is a module over the coefficient algebra H∗

G(pt) = H∗(BG) of the G-
equivariant theory. Suppose that points of the G-space M have only finite stabilizers.
Show that H∗

G(M,Q) is canonically isomorphic to H∗(M/G,Q). Use this fact in order to
define the Chern classes c(i) ∈ H∗(Xk,d) over Q accurately, that is taking into account the
automorphism groups Aut(f) of stable maps.

(b) A holomorphic section of a line bundle L over X with the 1-st Chern class p
determines a section of the bundle ev∗

k+1L over the universal curve. Define the l + 1-
dimensional bundle over Xk,d of l-jets of such sections at the 1-st universal marked point
and compute the Euler class of this bundle in terms of p and c(1). Interpret the number
of degree d spheres subject to tangency constraints of given orders with given generic
hypersurfaces in X in terms of gravitational descendents.

As it follows directly from the definition of the structural constants, the
quantum cup-product is (super-)commutative 2 and satisfies the following
Frobenius property with respect to the intersection pairing:

〈a ◦ b, c〉 = 〈a, b ◦ c〉 .
2We will understand commutativity and symmetricity in the sense of super-algebra and

thus will further omit the prefix super. It is safe however to assume that cohomology of
X has trivial odd part for it is true in our examples of homogeneous Kähler spaces.
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Associativity the quantum cup-product can be then formulated as the sym-
metricity with respect to permutations of the indices (1, 2, 3, 4) in the follow-
ing quadratic combination of the structural constants

∑

α,β

〈a1 ◦ a2, φα〉ηαβ〈φβ , a3 ◦ a4〉 ,

where
∑

ηαβφα⊗φβ is the coordinate expression for the Poincare-dual of the
diagonal ∆ ⊂ X ×X in terms of a basis {φα} in H∗(X) and the intersection
matrix (ηαβ) inverse to (ηαβ) := (〈φα, φβ〉).

The associativity property can be explained as follows. Consider the GW-
invariant A〈a1, a2, a3, a4〉d which counts the number of degree d spheres with
the configuration (0, 1,∞, λ) of marked points mapped to the given 4 cycles.
It is obviously symmetric in (1, 2, 3, 4) and does not depend on λ. Now let
the cross-ratio λ approach one of the exceptional values 0, 1 or ∞. In the
limit the same GW-invariant receives another interpretation: it counts the
number of pairs of maps f ′, f ′′ : CP 1 → X of degrees d′ + d′′ = d such that
f ′(∞) = f ′′(∞) and f ′(0), f ′(1), f ′′(0), f ′′(1) belong to the given 4 cycles.
Which pair of the cycles constrains f ′ and which — f ′′ depends however
on the special value of the cross-ratio λ. Rewriting the diagonal constraint
f ′(∞) = f ′′(∞) in X × X in terms of φα ⊗ φβ and summing contributions
of various degrees with the weights qd we arrive at the identity between the
above quadratic expression of the structural constants and the GW-invariant

∑

d

qdA〈a1, a2, a3, a4〉d

symmetric under permutations.

Exercise. (a) Formulate the above argument in terms the contraction map ct :
X4,d → M0,4 and the evaluation map ev′

3 × ev′′
3 : X3,d′ ×X3,d′′ and prove the associativity

of the quantum cup-product for a homogeneous Kähler space.
(b) Apply the same argument to the contraction maps ct : Xk,d → M0,k with k > 4

in order to show that the GW-invariant
∑

d q
d A〈a1, ..., ak〉d counting the number of maps

CP 1 → X sending 1, ..., k to a1, ..., ak can be expressed in terms of multiple products in
QH∗(X) as 〈a1, a2 ◦ a3 ◦ ... ◦ ak〉.

(c) Considering the degeneracy of the complex structure on a genus g Riemann surface
Σ to the curve of geometrical genus 0 with g self-intersections, express the virtual number
of holomorphic maps Σ → X in terms of the quantum cup-product.

The associativity identity and the above interpretation of multiple prod-
ucts in QH∗(X) are examples of universal relations between GW -invariants
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referred sometimes as composition laws or Witten-Dijkgraaf-Verlinde-Verlinde
equations. Another universal identity reads:

qi
∂

∂qi
〈a, pj ◦ b〉 = qj

∂

∂qj
〈a, pi ◦ b〉

where (p1, ..., pr) in an integer basis in H2(X) dual to the basis in H2(X,Z)
which we use for labeling the degrees d by (d1, ..., dr). Due to qi∂q

d/∂qi =
diq

d, it follows from the divisor equation

〈a, pi, b〉d = di〈a, b〉d
which simply means that a degree d sphere has intersection index di with a
codimension 2 cycle Poincare-dual to pi.

Exercise. Prove the divisor equation by computing the push-forward (ft2)∗ ev∗
2(pi)

from X3,d to X2,d. Apply the same argument to 1 instead of pi in order to conclude that
1◦ = id and give the enumerative explanation of the latter statement.

The divisor equation has the following remarkable interpretation. Con-
sider the system of 1-st order linear differential equations for a vector-function
of q with values in H∗(X)

(3) ~qi
∂

∂qi
~s = pi ◦ ~s

depending also on the parameter ~.
The system (3) is consistent for any non-zero value of the parameter ~.
Indeed, the differential equations mean that the vector-function ~s is annihi-
lated by the connection operator

∇~ := ~d−
r

∑

i=1

pi ◦
dqi

qi
∧ .

The operator consists of the De Rham differential d and of the exterior mul-
tiplication by the matrix-valued differential 1-form A1 :=

∑

(pi◦)d ln qi. The
consistency condition means that the connection is flat for any ~:

∇2
~

:= ~2d2 − ~dA1 + A1 ∧ A1 = 0 .

This is equivalent to commutativity of the quantum multiplication operators
pi◦ and to the element-wise closedness dA1 = 0 of the matrix-values 1-form.
The latter is guaranteed by the divisor equations.
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Consistency of a differential system means that solutions exist. The role
of solutions of the system (3) in Gromov-Witten theory can be explained in
terms of gravitational descendents. Consider the GW-invariants

Sαβ := 〈φα, e
(p ln q)/~φβ〉 +

∑

d6=0

qd〈φα, e
(p ln q)/~

φβ

~ − c
〉d .

Here c is the 1-st Chern class of the universal cotangent line at the 2-nd (of
the two) marked points so that 1/(~ − c) = h−1 + c~−2 + c2~−3 + ... is an
example of the function T (c) participating in the definition of gravitational
descendents, and p ln q = p1 ln q1 + ...+ pr ln qr.
The matrix (Sαβ) is a fundamental solution matrix of the linear differential
system (3).

One of the ways to approach this statement begins with a closer look
at the universal cotangent line at the last marked point over X3,d. Since
the sphere CP 1 with 3 marked points has a canonical coordinate system,
the universal cotangent line appears to be a trivial line bundle. Such a
conclusion is false because of reducible curves, which means that the line
bundle has a non-vanishing section over the part of X3,d corresponding to
irreducible curves, and the class c is represented by a divisor consisting of
the compactifying components. However, if such a component corresponds
to reducible curves Σ = CP 1 ∪ CP 1 with the 3-rd marked point situated on
the same CP 1 as at least one of the others, then the trivializing argument
still applies since this CP 1 has 3 special points. We conclude that the divisor
representing c corresponds to the components where the first CP 1 carries
the 1-st and the 2-nd marked points, and the 3-rd marked point is located
on the 2-nd CP 1. A more detailed analysis shows that the class c in X3,d is
represented by

∑

d′+d′′=d

[X3,d′] ×∆ [X2,d′′]

where ∆ symbolizes the diagonal constraint f ′(∞) = f ′′(0). Similarly to the
case of the associativity equation this factorization of the class c implies that

∑

d

qd〈a, pi, T (c)〉d =
∑

αβ

〈a, pi◦φα〉ηαβ(〈φβ , T (0)〉+
∑

d6=0

qd〈φβ ,
T (c)− T (0)

c
〉d) .
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The second step consists in relating 〈a, pi, T (c)〉d with 〈a, T (c)〉d in a fash-
ion similar to the divisor equation. At the first glance the invariants are
related by the push-forward of pi along the map ft2 : X3,d → X2,d and thus
differ by the factor di. This conclusion is false because ft∗2(c

(3)) 6= c(3) on
X3,d. More precisely, the universal cotangent line L at the last marked point
coincides with the pull-back from X2,d of the universal cotangent line L′ with
the same name unless the last marked point coincides with the forgotten 2-nd
marked point. Recalling the construction of forgetting maps we find that L
is trivial on the divisor D := [ǫ3] in X3,d while ft∗2 L

′ restricted to D ≃ X2,d is
equivalent to the universal cotangent line on X2,d. This actually means that

c1(ft
∗
2 L

′) = c1(L) + [D] and [D] ∩ c1(L) = 0 .

We arrive at the following generalization of the divisor equation:

〈a, pi, T (c)〉d = di〈a, T (c)〉d + 〈a, pi
T (c)− T (0)

c
〉d.

It is left only to notice that T (c) = 1/(~ − c) is the eigen-function of the
operation (T (c)− T (0))/c with the eigen-value 1/~ and that the conclusion
of the second step agrees with the differentiation of Sαβ in ln qi.

Exercise. Give another, rigorous proof of the fundamental solution statement (in the
case of homogeneous X):
(a) following the argument in the second step prove the string equation

〈a, 1, T (c)〉d = 〈a, T (c) − T (0)

c
〉d

(b) apply the 4-point argument to the descendent A〈a, pi, 1, T (c)〉d in order to prove that

∑

αβ

〈a, pi, φα〉d〈φβ , 1, T (c)〉d = 〈a, pi, T (c)〉d

(c) deduce the differential equation for (Sαβ) formally, using (a),(b) and the generalized
divisor equation.

The differential equations for the gravitational descendents give one more
example of universal identities between GW-invariants and along with some
initial conditions (asymptotical at q = 0) allows to recover the gravitational
descendents from the structural constants of the quantum cohomology alge-
bra. A more general theory involving other GW-invariants and gravitational
descendents will be outlined in the exercises.
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Exercises. Define the genus 0 potential of X as the following formal function of q
and t ∈ H∗(X):

F (t, q) =

∞
∑

k=0

1

k!

∑

d

qd〈t, t, ..., t〉d.

Solutions to the following exercises can be obtained by slight modification of the arguments
used in the proof of the WDVV, string and divisor equations.

(a) Express the GW-invariants 〈a1, ..., ak〉d as Taylor coefficients of F .
(b) On the space H∗(X), define the quantum cup-product ◦t depending on t by

〈a ◦t b, c〉 := ∂a∂b∂cF

where ∂vF means the directional derivative of F as a function of t in the direction of the
vector v ∈ H∗(X). Prove that ◦t provides the cohomology space with the structure of
commutative associative Frobenius algebra with unity 1 at least if X is a homogeneous
Kähler space. Find the degrees of the parameters t, q which make the quantum cup-product
graded.

(c) Show that the connection ∇~ := ~d − ∑

α(φα◦t)∧ (it can be understood as a
connection on the tangent bundle of the manifold H∗(X) ) is flat for any ~ 6= 0.

(d) Introduce the potential

Sαβ :=

∞
∑

k=0

1

k!

∑

d

qd〈φα, t, ..., t,
φβ

~ − c(k+2)
〉d

for the gravitational descendents. Prove that (Sαβ) is a fundamental solution matrix for
the differential system ∇~S = 0 (at least in the case of homogeneous Kähler spaces).

(e) Prove the following generalization of the divisor equation: for our basis (p1, ..., pr)
in H2(X) and any a, b, c

∂pi
∂a∂b∂cF = qi

∂

∂qi
∂a∂b∂cF.

Analyze the relation between the q-deformation ◦ of the cup-product introduced at the
beginning of the section 2 and the t-deformation ◦t.

(f) Find generalizations of WDVV, string and divisor equations to gravitational de-
scendents. Show that all the genus 0 descendents 〈T 1, ..., T k〉d are determined by the
potential F . Introduce the potential

F(T ) =
∑

k

1

k!

∑

d

qd〈T (c(1)), ..., T (c(k))〉d

for genus 0 gravitational descendents and try to describe the procedure expressing F in
terms of F (we refer to B. Dubrovin, The geometry of 2D topological field theory for the
answer).

(g) Introduce higher genus analogies Fg of the potential F and find the higher genus
versions of the string and divisor equations.
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3 QH∗(G/B) and quantum Toda lattices

The following proposition has been so far the most efficient tool for com-
puting relations in quantum cohomology algebras. Introduce the following
formal vector-function of q with values in the cohomology algebra H∗(X)
and depending on the formal parameter ~−1:

J := e(p ln q)/~(1 + ~−1
∑

d6=0

ev∗
qd

~ − c
) ,

where ev∗ is the push-forward along the evaluation map ev : X1,d → X, and
p ln q =

∑

pi ln qi. In fact J is determined by the conditions 〈J, φβ〉 = S0β

where we assume that φα with the index α = 0 is the unity 1 ∈ H∗(X). Thus
components of the vector-function J form the “1-st row” in the fundamental
solution matrix (Sαβ) of the differential system (3).

Proposition. Suppose that a polynomial differential operatorD(~q ∂
∂q
, q, ~)

annihilates the vector-function J . Then the relation D(p◦, q, 0) = 0 holds true
in the quantum cohomology algebra QH∗(X).

Proof. Application of the operator D to the fundamental solution matrix
S of the system (3) yields (M0 + ~M1 + ... + ~NMN )S where Mi are some
matrix-functions of q andM0 = D(p◦, q, 0). By the hypothesis the 1-st row in
the product vanishes and thus the 1-st row in each Mi vanishes too since the
fundamental solution matrix S is non-degenerate. In particular the entries
〈1, D(p◦, q, 0)φβ〉 = 〈D(p◦, q, 0), φβ〉 of the 1-st row in M0 are all zeroes and
thus D(p◦, q, 0) = 0. �

The proposition indicates that quantum cohomology is a quasi-classical
limit of the actual quantum object — the differential system (3). We will
illustrate applications of the proposition to computation of QH∗(X) with the
example (due to B. Kim (1996)) of the flag manifold X = G/B of a complex
semi-simple Lie group G (here B is the Borel subgroup, and the subgroup of
unipotent upper-triangular matrices in SLn+1(C) is a good example to have
in mind). Roughly speaking,
Kim’s theorem identifies J with the ground state of the quantum Toda system
corresponding to the Langlands-dual group G′

(on the level of simple complex Lie algebras the classical series Br and Cr

are Langlands-dual to each other while all others are self-dual).

16



Example: Ar. The differential operator

H :=
~2

2

r
∑

i=0

∂2

∂t2i
−

r
∑

i=1

eti−ti−1

is called the hamiltonian operator of the quantum Toda system (correspond-
ing to SLr+1). The Hamilton function

1

2

r
∑

i=0

p2
i −

r
∑

i=1

eti−ti−1

on the (complex) phase space with the symplectic structure
∑

dpi∧dti defines
evolution of the classical Toda system of r + 1 interacting particles. The
Toda system is completely integrable on both classical and quantum levels,
and according to Kim’s theorem the conservation laws play a key role in the
quantum cohomology theory of the manifold

X = {0 ⊂ C1 ⊂ ... ⊂ Cr ⊂ Cr+1}

of complete flags in Cr+1.
The cohomology algebra H∗(X) is canonically isomorphic to

Q[p0, ..., pr]/(σ1(p), ..., σr+1(p))

where pi is the 1-st Chern class of the tautological line bundle with the fiber
Ci+1/Ci (prove this !).

The flag manifold X has r projections to the partial flag manifolds X(i)

defined by omitting the i-dimensional space in the flag. The fibers of the
projections are isomorphic to CP 1 (why?).

Exercise. Prove that any compact holomorphic curve in X of the same degree 1i as
the fiber of the projection X → X(i) is one of the fibers.

The exercise identifies X(i) with the moduli space X0,1i
of degree 1i ra-

tional stable maps to the flag manifold X, and also identifies the projection
X → X(i) with the forgetting map X1,1i

→ X0,1i
. The classes 1i form a

basis in the lattice H2(X,Z), and we will use the weight qd for contributions
of holomorphic curves of degree (d1, ..., dr) with respect to this basis. These
notations generalize to arbitrary X = G/B as follows.
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Exercises. (a) Using the Bruhat cell partition of G/B and the spectral sequence of
the bundle BT r → BG (induced by the embedding of the maximal torus into G) identify
H∗(G/B,C) with the algebra of C[g]Ad of Ad-invariants on the Lie algebra of G.

(b) Among the subgroups in G containing B (they are called parabolic) there are
r sub-minimal parabolic subgroups P1, ..., Pr (the minimal one is B) corresponding to
simple roots. Put X(i) = G/Pi and identify X(i) with X0,1i

and X → X(i) — with
ft : X1,1i

→ X0,1i

(c) Show that the degree of any compact holomorphic curve in X is a non-negative
integer combination

∑

di1i.
(d) Using 1-st Chern classes of line bundles identify the lattice of weights of g (that is

the lattice of characters of the maximal torus in the simply connected model of G) with
H2(X,Z) and show that (11, ..., 1r) is a basis of simple roots of the coroot system (which
is the root system for g

′.
(e) Let (p1, ..., pr) be the dual basis in H2(X,Z) (pi are called fundamental weights).

Show that c1(TX) = 2(p1 + ...+ pr) (in other words, deg qi = 2, i = 1, ..., r).
(f) Find the relation of the classes p1, ..., pr with what we denoted p0, ..., pr in the case

of SLr+1 .

It turns out that the exercise (b) provides enough geometrical information
for our purposes about rational curves in the flag manifolds G/B.

Lemma 1. Let Q :=
∑

Qijpipj = 0 be the quadratic relation in the
algebra H∗(X) defined by the Killing Ad-invariant quadratic form on g. Then
the relation

Q(p◦) =
∑

Q(1k)qk

holds true in the quantum cohomology algebra of X.

Proof. For degree reasons Q(p◦) must be a linear combination
∑

ckqk.
The coefficient ck is then the GW-invariant

∑

Qij〈pi, pt, pj〉1k
which depends

only on the intersection indices of the fiber in X → X(k) through the given
point pt in X with the divisors pi and pj . It equals

∑

Qijpi(1k)pj(1k) = Qkk

since the bases {pi} and {1i} are dual. �

Lemma 2. The differential operator

H := Q(~q
∂

∂q
) −

∑

Q(1k)qk

annihilates J .

Proof. Application of H to the fundamental solution matrix S yields

[Q(p◦) −
∑

Q(1i)qi + ~
∑

Qijqi
∂

∂qi
(pj◦)]S.
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The 1-st two terms annihilate each other by Lemma 1, and the sum of order
~ has zero 1-st row since the 1-st row entries 〈1, pj ◦ φβ〉 = 〈pj , φβ〉 in the
matrix pj◦ do not depend on q. �

Lemma 3. A formal series I of the form

e(p ln q)/~
∑

d≥0

Pdq
d

with Pd ∈ H∗(X,Q[~−1]) which satisfies the differential equation HI = 0 is
uniquely determined by P0.

Proof. The equation HI = 0 gives rise to the recursion relation

Q(p+ ~d)Pd =
∑

k

Q(1k)Pd−1k

for the coefficients, and Q(p + ~d) is invertible in H∗(X) for d 6= 0 since pi

are nilpotent and Q(d) > 0. �

Corollary 1. The GW-descendent J for the flag manifold X = G/B
is uniquely determined by the differential equation HJ = 0 and the initial
condition P0 = 1.

Corollary 2. Let D(~q ∂
∂q
, q, ~) be a polynomial differential operator com-

muting with H and suppose that the principal symbol D(p, 0, 0) vanishes
in the algebra H∗(G/B). Then DJ = 0 and therefore D(p◦, q, 0) = 0 in
QH∗(G/B).

Proof: The hypotheses about D guarantee that I = DJ satisfies HI = 0
and has zero initial term P0. �

Example: Ar. Consider the characteristic polynomial λr+1 + D1λ
n +

...+Drλ +Dr+1 of the matrix













∂
∂t0

et1−t0 0 ... 0

−1 ∂
∂t1

et2−t1 0 ...

0 −1 ∂
∂t3

et3−t2 ...

. . .
0 ... 0 −1 ∂

∂tn













.

Exercise. (a) Should we worry about non-commutative determinants?
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(b) Express H in terms of D1 and D2.
(c) Check that symbols of the differential operators D1, ..., Dr+1 Poisson-commute.
(d) Prove that [H,Di] = 0 for all i.

Taking eti−ti−1 on the role of qi and replacing the derivations ~∂/∂ti in
the above matrix by pi we obtain the following

Theorem. 3 Quantum cohomology algebra of the manifold of complete
flags in Cr+1 is canonically isomorphic to the algebra

Q[p0, ..., pr, q1, ..., qr]/(D1(p, q), ..., Dr+1(p, q))

of regular functions on the invariant Lagrangian variety of the classical Toda
lattice.

For general flag manifolds G/B the differential operators commuting with
H come from the theory of quantum Toda lattices on G′. Consider holomor-
phic functions f : G′ → C which transform equivariantly under left transla-
tions by the “lower-triangular” unipotent subgroup N+ and right translations
by the “upper-triangular” unipotent subgroup N− in accordance with given
generic characters ξ± : N± → C×:

f(x−1
+ gx−) = ξ+(x−1

+ )f(g)ξ−(x−) .

Restriction of such a function to the maximal complex torus in G′ (which will
be the configuration space of the Toda lattice) determines f on a dense subset
in G′. The commuting differential operators — quantum conservation laws
of the Toda lattice — originate of course from the center Z of the universal
enveloping algebra Ug

′. The algebra Ug
′ identifies with the algebra of, say,

left-invariant differential operators on G′. Its center consists of bi-invariant
differential operators on G′ and thus preserves the sheaf of equivariant func-
tions described above. Thus Z acts on functions on the maximal torus by
commuting differential operators.

In fact the bi-invariant laplacian on the group gives rise to the hamil-
tonian operator H via this construction accompanied by “the ρ-shift ” —
conjugation by the multiplication operator qρ where ρ is the semi-sum of
positive roots of the Lie algebra g

′. The center Z is known to be isomorphic
to the algebra of Ad-invariant polynomials on g

′ through the Harish-Chandra

3See A. G. & B. Kim, I. Ciocan-Fontanine, B. Kim (1996).
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isomorphism. This gives us r commuting polynomial differential operators
D(p, q, ~) which are known to have W -invariant principal symbols D(p, 0, 0)
after the conjugation by qρ. 4 Thus, combining the above lemmas with known
results of representation theory about quantum Toda lattices, B. Kim (1996)
proves:
QH∗(G/B) is isomorphic to the algebra of regular functions

Q[p1, ..., pr, q1, ..., qr]/(D1(p, q), ..., Dr(p, q))

where (D1, ..., Dr) is the complete set of homogeneous conservation laws of
the Toda system with the Hamilton function Q(p) − ∑

Q(1k)qk.
Of course, these conservation laws can be obtained not only as symbols of
the commuting differential operators but also form Ad-invariant polynomials
on g

′ by suitable symplectic reduction of T ∗G′ with respect to the left-right
translations by N+ ×N−.

Exercises. (a) Express the geometrical construction of the commuting differential
operators in algebraic terms of the universal enveloping algebra and compute the operator
generated by the bi-invariant laplacian. Choose the characters ξ± so that after the ρ-shift
the operator coincides with H . (In fact the algebraic language of Ug

′ is more suitable for
observing the necessary polynomiality properties of our differential operators.)

(b) Give enumerative interpretation of the relation H(p, q) = 0 in QH∗(X).

4 Singularity theory

In quantum cohomology theory we have encountered a linear pencil of flat
connections

(4) ∇~ := ~d−
∑

Ai(t)dti∧
on a trivial vector bundle with the fiber H over some base B. Given such a
pencil one can ask about asymptotical behavior of horizontal sections as ~ →
0. It is natural to suspect that the asymptotical behavior should be related to
some geometry associated with the operator-valued 1-form A1. We will study
this geometry under the semi-simplicity assumption that the common eigen-
vectors of the commuting operators Ai(t) form a basis {vα(t)}, α = 1, ..., N
for each t ∈ B. We may also assume (for the sake of our applications) that

4see B. Kostant (1974) M. Semenov-Tian-Shansky (1987), or B. Kim (1996). By the
way, the invariance property of the symbols with respect to the Weyl group W at q = 0 is
a consequence of the theory of Verma modules and their BGG-resolutions.
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the operators Ai are symmetric with respect to the constant coefficient inner
product 〈·, ·〉, and that the eigen-basis is orthonormal. In our actual situation
H is the cohomology space of X and contains a distinguished element 1.
The inner product on H is carried over to the algebra C[B][A1, ..., Ar] as
〈φ, ψ〉 := 〈1, φ(A.)ψ(A.)1〉 and automatically satisfies the Frobenius property.

Proposition (see for instance A. G. & B. Kim). The eigen-value 1-forms
∑

pα
i (t)dti are closed and thus form a Lagrangian variety L in the cotangent

bundle T ∗B with N branches over the base B.

Roughly speaking, the proposition means that the subalgebra in QH∗(X)
generated by the degree 2 classes can be always treated as the algebra of
functions on a Lagrangian variety. The invariant Lagrangian variety in the
phase space of the Toda lattice provides a good example.

Exercises. (a) Prove the proposition by differentiating the constant functionwα(vα) =
1 where wα(t) is the corresponding common eigen-covector of operators Ai(t).

(b) Give another proof: diagonalize the 1-form, A1 = ΨD1Ψ−1, and derive dD1 = 0
from dA1 = 0. Notice that this proof require stronger assumptions than (a).

(c) Show that L is given by the characteristic equation det(A1 − ∑

pidti) = 0 (to be
satisfied for all values of the commuting coordinates dti on the tangent space TtB) at least
if the eigen-value 1-forms D1

α are everywhere distinct.
(d) Identify the commutative algebra C[B][A1, ..., Ar] with the algebra of functions on

L (at least under the same hypotheses as in (c)).
(e) Show that the basis of delta-functions of the branches in L diagonalizes the inner

product 〈φ, ψ〉 in the algebra:

〈φ, ψ〉(t) =
∑

pα∈L∩T∗

t
B

φ(pα)ψ(pα)

∆(pα)

where ∆ is a suitable function on L. Show that in the quantum cohomology setting the
function ∆/(dimH) represents the cohomology class Poincare-dual to a point.

The class in H∗(X×X) Poincare-dual to the diagonal defines an element in C[L×BL].
Show that ∆ is the restriction of this element to the diagonal L ⊂ L×B L. Compare both
descriptions of ∆ with the residue formula for Poincare pairing in QH∗(CP n) from the
exercise in the section 1.

(f) Consider the function u on L defined as a (local) potential
∫

∑

pidti of the eigen-
value 1-forms. Taking into account the grading in quantum cohomology algebras show
that the restriction to L of the linear function c1(TX) =

∑

µipi plays the role of such a
potential.

Now let us try to find an asymptotical representation of a fundamental
solution S to the differential system ∇~S = 0 in the form

S = Ψ(t)(1 + ~Φ(t) + o(~)) exp(U/~)
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of the product of a formal matrix series in ~ and the exponential function
of the diagonal matrix U/~. Equating the terms of order ~0 in the equation
∇~S = 0 we obtain A1Ψ = ΨdU which means that columns of Ψ must
be eigen-vectors of A1 and the entries of the diagonal matrix U must be
potentials uα of the eigen-value 1-forms. In the order ~1 we have Ψ−1dΨ =
[dU,Φ]. Since commutator with a diagonal matrix has zero diagonal entry,
this means that in the variation Ψ(t) of an (orthogonal !) eigen-basis of A1

inner squares of the eigen-vectors may not vary.

Exercise. Proceed to higher orders in ~ in order to show that the asymptotical
fundamental solution in the form Ψ(1 + ~Φ1 + ~2Ψ2 + ...) exp(U/~) exists.

Reformulating the result of our computation in terms of the algebra of
functions on L we conclude that the system ∇~~s = 0 has a basis of solutions
with the asymptotical expansion ~sα = eu(pα(t))/~(∆1/2(pα)(1+o(~)), and that
the corresponding component 〈1, ~sα〉 of the vector-function J assumes the
form

Jα =
euα/~

√
∆α

(1 + o(~))

This form strongly resembles stationary phase asymptotics of oscillating in-
tegrals in singularity theory — the subject we have to discuss next.

Let π : Y → B be a family of complex manifolds Yt and f : Y → C

be a holomorphic function. One defines the Lagrangian variety L ⊂ T ∗B
parametrized by critical points of functions ft := f |Yt as follows. A critical
point is a point in y ∈ Y where the differential dyf is projectable to a covector
p(y) on B applied at t = π(y). Since ft may have several critical points, we
obtain several covectors in T ∗

t B. The pull-back of the action 1-form
∑

pidti
to the critical set by the map y → p(y) is the differential of the critical value
function y → f(y), and thus the variety L ⊂ T ∗B swept by the covectors p(y)
is isotropic and under some mild genericity assumptions — Lagrangian. It is
called the Lagrangian variety generated by the family (Yt, ft). Notice that the
algebra of functions on L can be considered as a family of finite-dimensional
algebras Ht := C[Yt]/(∂ft/∂y) of functions on the critical sets.

Suppose now that Yt are provided with a holomorphic family ωt of holo-
morphic volume forms. Then one can define the Hessian ∆(y) of ft at a
critical point y as the determinant of the Hess matrix (∂2ft/∂y

2) with re-
spect to a unimodular local coordinate system (which requires that ωt(y) =
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dy1 ∧ ...∧dym, m = dimY ). If ft has only non-degenerate critical points one
can introduce the residue pairing of functions on Yt

〈φ, ψ〉 =
∑

y∈crit(ft)

φ(y)ψ(y)

∆(y)

which makes Ht a Frobenius algebra. The residue pairing can be also de-
scribed by the integral residue formula

〈φ, ψ〉 =
1

(2πi)m

∮

{|∂ft/∂yj |=ǫj}

φψ ωt

∂ft

∂y1
... ∂ft

∂ym

.

In this form the residue pairing extends to the functions ft with any isolated
singularities and is known to remain non-degenerate as a bilinear form on
the algebra Ht.

Consider now the complex oscillating integral of the form

I(t) =

∫

eft/~ωt

over a real m-dimensional cycle Γt in Yt. It is a function on B, and one can
study the dependence of I in t by deriving differential equations for it in the
following manner.

Exercise. Differentiating the 1-dimensional integral I =
∫

e(y
3/3−ty)/~dy derive the

equation ~2 Ï = tI. Compare the symbol p2 = t of the equation with the equation of the

critical set in the family of phase functions ft = y3/3 − ty.

In general the coincidence observed in the exercise is true only asymptoti-
cally when ~ → 0. Differentiating the integral by ~∂/∂ti yields an amplitude
factor φ = ∂ft/∂ti + o(~). At the same time differentiation ~∂/∂yj along the
fibers of the family Yt yields the factor ∂ft/∂yj + o(~) but does not change
the value of the integral. Thus, performing computations modulo ~ we would
conclude that differentiation of I by ~∂/∂ti is equivalent to multiplication by
∂ft/∂ti in the algebra Ht. (Notice that the analogue of this statement in the
quantum cohomology theory holds precisely and not only modulo ~).

Furthermore, the stationary phase approximation to the integral I near
a critical point y yields

I ∼ ~m/2 e
ft(y)/~

√

∆(y)
(1 + o(~))
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Exercise. The Gaussian integral
∫ ∞

−∞
exp(−ay2/~)dy with positive a and ~ is pro-

portional to ~1/2/a1/2. Expand the integral
∫ ∞

−∞

e(f(0)−ay2+by3+cy4+...)/~(1 + αy + βy2 + ...)dy

into the asymptotical series ∼ ~1/2ef(0)/~a−1/2(1+o(~)). Show that the integral
∫

e−ay2/~φ(y)dy
with φ vanishing identically in a neighborhood of y = 0 is a flat function of ~ at ~ = 0.
Give higher-dimensional generalizations of these statements.

The similarity between asymptotical solutions to the system ∇~S = 0
arising from quantum cohomology theory and asymptotics of complex oscil-
lating integrals suggests the following, rather optimistic, conjecture:

Given a compact (almost) Kähler manifold X of complex dimension m,
one can associate to it a family (Yq, fq, ωq) of algebraic m-dimensional mani-
folds, functions and complex volume forms parametrized by the complex torus
H2(X,C)/H2(X, 2πiZ) in such a way that the gravitational descendent J
corresponding to X satisfies the same differential equations as the complex
oscillating integral I, that is

〈J, φα〉 =

∫

Γα

efq/~ωq

for suitable bases of classes φα in H∗(X) and of cycles Γα in Yq.
It is interesting to look at this formulation in the degenerate case when

the manifold X is algebraic and has zero 1-st Chern class c1(TX) (such X are
called Calabi-Yau manifolds in a broad sense, and abelian manifolds, elliptic
curves, K3-surfaces and their higher-dimensional generalizations provide a
pool of examples). It is expected that the manifolds Yt in this case are also
compact and therefore the functions ft are constant. Yet Yt should carry a
non-vanishing holomorphic m-form ωt and thus must have zero 1-st Chern
class as well. The oscillating integrals degenerate to the periods

∫

ωt of the
volume forms which are known to distinguish non-equivalent complex struc-
tures. On the other hand, since Yt are compact algebraic manifolds, one can
define their GW-invariants, quantum cohomology algebras, etc. Then vari-
ations of complex structures detected by periods of complex volume forms
on X are expected to represent GW-invariants of Y . This symmetric picture
of mirror correspondence between Calabi-Yau manifolds is the classical (and
somewhat oversimplified) version of the mirror conjecture. In fact the rela-
tion between symplectic (resp. complex) geometry of X and complex (resp.
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symplectic) geometry of Y is expected to be much more profound than the
equality between periods I of holomorphic forms and the solution J of our
differential system.

With the same reservations, we can interpret the above conjecture as
a proposal to generalize the mirror conjecture beyond the class of Calabi-
Yau manifolds. As it follows from our asymptotical analysis of the system
∇~ = 0, one should admit non-compact manifolds Yq provided with non-
constant function fq on the role of mirror partners and be prepared to sacrifice
the symmetry of the mirror correspondence.

Exercise. Let X be a non-singular degree 5 hypersurface in CP 4. Show that it is a
Calabi-Yau manifold, that its quantum cohomology algebra is nilpotent, the Lagrangian
variety L is a multiple zero section in T ∗B and the differential equation for J does not really
depend on ~. Generalize these observations to arbitrary CY manifolds. Compare these
results with properties of complex “oscillating” integrals with constant phase functions.

The actual motivation of the generalized mirror conjecture comes from
supporting examples based on toric geometry. Here is the simplest one.

Example: the mirror of CP 1. The integral

I =

∫

Γ⊂{y1y2=q}

e(y1+y2)/~
dy1 ∧ dy2

dq

satisfies the Bessel differential equation

(~q
∂

∂q
)2I = qI

and therefore (Yq, fq, ωq) where Yq is given by the equation y1y2 = q in
Y = C2, the function fq is the restriction to Yq of f = y1 + y2, and ωq is the
relative “volume” form (dy1 ∧ dy2)/d(y1y2) on Yq can be taken on the role
of the mirror partner of X = CP 1. In greater detail, let ~ > 0, q 6= 0. The
function fq in the coordinate y1 6= 0 on Yq reads fq = y1 + q/y1 and has two
critical points y1 = ±q1/2 with the critical values ±2q1/2. On the line of values
of fq pick two paths starting from the critical values and going to infinity
toward the direction Re fq → −∞. Each such a path has two preimages in Yq

which glue up to a non-compact cycle when oriented oppositely. The integral
I over each of the two cycles (denote them Γ±) converges. As a function of q
it satisfies the Bessel differential equation. Indeed, in logarithmic coordinates
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Ti = ln yi, t = ln q the integral takes on the form

∫

Γ̃±⊂{T1+T2=t}

e(eT1+eT2 )/~
dT1 ∧ dT2

d(T1 + T2)
,

and the double differentiation ~2∂2/∂T1∂T2 yields the amplitude factor eT1+T2

= q. The variety L generated by the family fq is described by the relation
p2 = q in QH∗(CP 1). The potential u =

∫

p d ln q of the action 1-form
coincides with the the critical value function ±2q1/2 = 2p. Since the Hessian
∆(p) of fq = eT1 + qe−T1 at the critical points equals 2p, the residue pairing
defines the Frobenius structure on C[L] identical to the Poincare pairing
(2πi)−1

∮

dp φψ/(p2 − q).

Exercises. (a) Using holomorphic version of the Morse lemma show that all critical
points of the real part of a holomorphic Morse function in m variables have the same
Morse index m. Deduce that under some transversality assumptions about a holomorphic
function f : Y → C at infinity the rank of the relative homology group Hm(Y,Re f →
−∞) equals the total multiplicity of critical points. Generalize to higher dimensions the
construction of the cycles Γ± from the above example. Show that in the example the
cycles Γ± form a basis in the group H1(Yq,Refq → −∞). Find the place for the compact
cycle |y1| = 1 in this group.

(b) Prove that (Yq , fq, ωq) with

Yq : y1...yn+1 = q, fq = (y1 + ...+ yn+1)|Yq, ωq =
dy1 ∧ ... ∧ dyn+1

d(y1...yn+1)

is the mirror partner of X = CP n in the same sense as in the case n = 1 studied in the
example.

5 Toda lattices and the mirror conjecture

The example of the mirror partner for CP 1 can be generalized to the manifold
X of complete flags in Cr+1 as follows.

Consider the following “2-dimensional Toda lattice” with (r+1)(r+2)/2
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vertices and r(r + 1) edges:

•
u1 ↓ v1

• → •
↓ u2 ↓ v2

• → • → •
↓ ↓ u3 ↓

. . .
↓ ↓ ... ur ↓ vr

• → • ... → • → •

For each edge ǫ of the lattice we introduce a complex yǫ. For each 1×1-square

yα

• → •
yγ ↓ ↓ yβ

• → •
yδ

we impose the “commutativity” relation yαyβ = yγyδ. These relations deter-
mine the variety Y of complex dimension r + r(r + 1)/2 in the space with
coordinates yǫ. Using the notation ui, vi (as shown on the diagram) for the
variables yǫ corresponding to the edges next to the diagonal, we fiber Y over
the space B with coordinates q1, ..., qr:

q1 = u1v1, ..., qr = urvr.

For q1...qr 6= 0 all the relations together mean that all yǫ are non-zero and
that their logarithms satisfy the Kirchhoff law: the voltage drops ln yǫ ac-
cumulate to 0 over a closed contour, and ln qi determine the voltage drop
between neighbor diagonal vertices. Thus one can express yǫ via the ver-
tex “potentials” — variable Tν corresponding to the vertices ν of the lattice:
yǫ = exp(Tν+−Tν−) where ν+ and ν− are respectively the head and the tail of
the edge ǫ. In particular, the variables Tν corresponding to all under-diagonal
vertices form a coordinate system on the covering of the complex torus Yq.
We put

ωq = ∧νdTν
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and define fq as the restriction to Yq of the function

f =
∑

all edges ǫ

yǫ =
∑

ǫ

eTν+(ǫ)−Tν−(ǫ).

Theorem. 5 Complex oscillating integrals

I =

∫

Γ⊂Yq

efq/~ωq

satisfy the differential equations D1I = ... = Dr+1I = 0 where Di(~q∂/∂q, q)
are the quantum conservation laws of the quantum Toda lattice associated
with the group SLn+1.

Corollary. The family (Yq, fq) generates in T ∗B the invariant Lagrangian
variety D1(p, q) = ... = Dr+1(p, q) = 0 of the classical Toda lattice.

Exercise. Check that in the case r = 1 the theorem agrees with the example of the
mirror partner for CP 1.

Even the corollary is not quite obvious. We will prove it by induction on
the number of diagonals in our 2-dimensional lattice. Let us recall that that
the operator D := λr+1 +D1λ

r + ...+Dr+1 is the characteristic polynomial of
the matrix introduced in the section 3. Denote t0, t1, ...tr the vertex variables
Tν corresponding to the diagonal vertices. Since ∂f/∂ti = vi − ui+1 and
qi = uivi, we need to prove that the characteristic polynomial of the following
matrix equals λn+1 at critical points of fq:

Ar+1 =













−u1 u1v1 0 ...
−1 v1 − u2 u2v2 0 ...
0 −1 v2 − u3 u3v3 ...

. . .
... 0 −1 vr













.

The matrix Ar+1 factors into the product UV of the following square matri-

5See A. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and

the mirror conjecture.
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ces:

U =

















u1 0 ...
1 u2 0 ...
0 1 u3 0 ...

. . .
... 0 1 ur 0

0 1 0

















, V =

















−1 v1 0 ...
0 −1 v2 0 ...
0 0 −1 v3 0 ...

. . .
... 0 −1 vr

... 0 −1

















.

Since V is invertible, the matrix UV is similar to B = V U . We find:

B =

















v1 − u1 v1u2 0 ... 0
−1 v2 − u2 v2u3 0 ... 0
0 −1 v3 − u3 v3u4 ... 0

. . . 0
... 0 −1 vr − ur 0

... 0 −1 0

















.

We claim that the characteristic polynomial of B equals λn+1 by the induc-
tion hypothesis. Indeed, using “commutativity” of the 1 × 1-squares next
to the diagonal of the lattice and the criticality conditions 0 = ∂f/∂Tν =
∑

ǫ:ν±(ǫ)=ν ±yǫ at the vertices ν next to the diagonal we can identify the up-
per left r × r corner of the matrix B with the matrix Ar corresponding to
the 2-dimensional lattice with the main diagonal cut off. By the induction
hypothesis det(λ + Ar) = λr under the conditions ∂f/∂Tν = 0 at all other
under-diagonal vertices ν. �

The prove of the theorem can be obtained as a non-commutative ver-
sion of the above inductive argument. Application of the operator D to the
function exp(f/~) yields the amplitude factor det(λ+ Ar+1) which is, as we
already know, equivalent to λr+1 modulo the ideal generated by the partial
derivatives ∂f/∂Tν along directions tangent to the fibers Yq. Derivatives in
these directions annihilate the integral I , but the equivalence modulo the
ideal is not sufficient: we need to earn the same equivalence modulo exact
forms by honest consecutive differentiation. This plan can be completed
without complications. However, the actual meaning of the integral I in har-
monic analysis on SLr+1 and in the theory of quantum Toda lattices remains
unclear. Generalizations of this mirror construction to the flag manifolds
G/B of other semi-simple groups are also unknown.
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Exercise. Thinking of 2-dimensional lattices of a block-triangular shape, guess mirror
partners of the manifolds of partial flags in Cr+1 , starting with CP r and grassmannians.
Check that your answer for CP r gives rise to the same mirror partner as in the section 4.

Remark. The “right” answer to the exercise remains only a guess: although quantum
cohomology algebras of partial flag manifolds have been described and their conjectural
mirrors — found, the differential equations for I and J have not been identified so far.

References
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