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Introduction

Consider a generic quintic hypersurfaceX in CP 4. It is an example of Calabi–
Yau 3-folds. It follows from Riemann–Roch formula, that rational curves on
a generic Calabi–Yau 3-fold should be situated in a discrete fashion. There-
fore a natural question of enumerative algebraic geometry arises: find the
number nd of rational curves in X of degree d for each d = 1, 2, 3, .... In 1991
Candelas, de la Ossa, Green and Parkes [1] ‘predicted’ all the numbers nd

simultaneously: they conjectured that the generating function

K(Q) = 5 +

∞∑
d=1

ndd
3Qd

1−Qd

can be found by studying the 4-th order linear differential operator annihi-
lating some hypergeometric series, namely

∞∑
d=0

(5d)!qd

(d!)5
.

∗This research is partially supported by Alfred P. Sloan Foundation and by NSF Grant
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The conjecture was motivated by some ideas of conformal topological field
theory (CTFT): there is a 1-parametric family Yq of Calabi-Yau 3-folds which
are ‘mirrors’ of the quintics X in the sense that their Hodge numbers satisfy
hr,s(Y ) = h3−r,s(X). This indicates that a model of CTFT dealing with
rational curves in X might be equivalent to a model based on periods of
holomorphic 3-forms in Yq. Therefore problems about rational curves in X
can be transformed into those about the Picard–Fuchs equation for periods
of holomorphic forms in Y . The hypergeometric series in question is in fact
one of such periods.

The ‘mirror conjecture’ about equivalence of algebraic geometry of ra-
tional curves in Calabi–Yau manifolds and variations of Hodge structures
on their mirrors, as well as an explicit construction of such mirror pairs,
has been generalized to a broad class of Calabi–Yau complete intersections
in toric varieties (see Batyrev [2] and Batyrev – Van-Straten [3]) and sup-
ported by numerous verified corollaries and ‘experimental’ data (see papers
by D.Morrison and references therein). However the mirror phenomenon it-
self, and especially the relation between rational curves inX and the Picard–
Fuchs differential equation for Y remain mysterious.

In this paper, we make a step toward explanation of the mirror conjec-
ture. Namely we describe how hypergeometric differential equations arise in
connection with algebraic geometry of rational curves in Kahler manifolds.
In particular, the differential equations which one used to observe in the the-
ory of mirror manifolds as Picard–Fichs equations for periods of holomorphic
forms “on Y ”, will be obtained naturally in terms of geometry of rational
curves in X.

In Section 1 we remind some basic facts about equivariant cohomology
and formulate a simple lemma which already contains a germ of mirror phe-
nomena. In Section 2 we describe a project called Equivariant Floer co-
homology which is supposed to explain the role of differential equations in
algebraic geometry of rational curves: we show that the equivariant Floer
cohomology should bear a D-module structure. While it may be not easy to
make the whole project rigorous, one can make its idea work in some exam-
ples, namely in the case of toric manifolds and toric complete intersections.
For the sake of simplicity we concentrate here on projective hypersurfaces
and derive in Sections 3 and 4 complete solutions of certain hypergeomet-
ric differential equations written down in cohomological terms of spaces of
maps CP 1 → CP n−1. More general case of complete intersections in toric

2



manifolds can be treated analogously (see [15]). In a forthcoming paper we
will explain why the differential equations in question are Picard–Fuchs i. e.
we will give a natural integral representation for their solutions — also in
cohomological terms.

Applying our constructions to the problem about numbers of rational
curves on quintics, one should keep in mind the ‘strange’ computational
procedure used in [1] and [3]:

Consider the linear differential operator

D4 − 5q(5D + 1)(5D + 2)(5D + 3)(5D + 4) where D = q
d

dq
.

It has a singularity at q = 0 and q = 1/55 and the monodromy of solutions
at q = 0 is known to be unipotent. In particular this means that there is a
single-valued solution f0(q) (it is given by the hypergeometric series above)
and a solution of the form log(q)f0(q) + f1(q) where f1 is holomorphic near
q = 0 and f1(0) = 0. Introduce then a new local coordinate

Q(q) = q exp(f1(q)/f0(q)).

Take the ‘renormalized Yukawa 3-differential’

5

(1− 55q)f0(q)2
(
dq

q
)⊗3

and transform it to the new local coordinate Q so that it assumes the form
k(Q)(dQ/Q)⊗3. Then the mirror conjecture for quintics says that the func-
tion k(Q) coincides with the generating function K(Q) for the numbers nd

of rational curves of degree d.
Our results reduce this conjecture to the statement (formulated with more

detail in Section 5) that two different problems, both about rational curves
on quintics, lead to two different 4-th order linear ODE whose 4 solutions,
however, describe proportional unparametrized curves in C4. From this point
of view the above ‘strange’ computational procedure becomes rather natural.

An observation crucial for this paper was made during my visit to UNC
at Chapel Hill. I am thankful to all members of the Department of Mathe-
matics and especially to my host A.Varchenko for hospitality and stimulating
discussions. I would like also to thank Institute Henri Poincare where this
paper is being completed.
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1 Equivariant cohomology

We begin with a brief discussion of our principal tool in this paper — equiv-
ariant cohomology of hamiltonian circle actions.

Let M be a topological space provided with a compact group G action,
let EG→ BG be the universal principal G-bundle. Equivariant cohomology
H∗

G(M) is defined as H∗(MG) where MG = EG×GM = (EG×M)/G is the
homotopic quotient of M by G. The projectionMG → BG = EG/G = (pt)G

provides H∗
G(M) with a module structure over the characteristic class ring

H∗
G(pt) = H∗(BG).

Essentially we need the case where M is a compact complex manifold
provided with a holomorphic action of the complex circle C − 0 containing
S1. Then ES1 can be identified with C∞ − 0 or the unit sphere therein, and
the classifying space BS1 — with CP∞. One can also use finite-dimensional
approximations of the universal bundle by the Hopf bundle (CN−0)/(C−0) =
CPN−1 and define equivariant cohomology as a limit. Setting the convention
that all cohomologies are with complex coefficients we describe the coefficient
ring of the S1-equivariant theory as a polynomial algebra with one generator
of degree 2 (represented by hyperplane sections in CP∞). We will see soon
that the natural notation for this generator is ~:

H∗

S1(pt) = H∗(CP∞) = C[~].

In the case whenM is a compact manifold one can define the push forward
operation H∗

G(M) → H∗
G(pt) which consists in fiberwise integration in the

bundle MG → BG along the fibers M .
There is also a De Rham model for equivariant cohomology of a manifold

M . The S1-equivariant De Rham complex consists of differential forms on
M depending in a polynomial way on the parameter ~ and invariant with
respect to the circle action on M . If v denotes the vector field generating the
action then the equivariant De Rham differential is d+ ~iv. Cohomolohy of
such complex is known to coincide with the equivariant cohomology defined
above.

This construction was exploited by Atiyah–Bott [4] and Berline–Vergne
[14] in order to explain Duistermaat – Heckman formula for hamiltonian
circle actions. Let M be a compact symplectic 2m-dimensional manifold, ω
— the symplectic form, H — the Hamilton function of the circle action, Fα
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— critical manifolds of H (= the fixed point sets of the action) with critical
values Hα. The formula says that∫

M

e~Hω
m

m!
=

∑
α

e~Hα

∫
Fα

eω

Eα

where Eα is the equivariant Euler class of the normal bundle to Fα in M .
The RHS of the Duistermaat–Heckman formula is in fact the principal

term of the stationary phase asymptotic of the integral on the LHS, and
the formula means that the asymptotic gives exact answer. An explanation,
according to Atiyah–Bott, is that p = ω + ~H is closed in the equivariant
De Rham complex so that the LHS can be interpreted as the push forward
of exp p, while the RHS represents the same cohomology class via so called
Borel localization theorem.

The localization theorem says (see [5] or [6]) that for a finite-dimensional
M , pull-back from M to the fixed point set F induces an additive isomor-
phism between H∗

S1(M) and H∗

S1(F ) = ⊕αH
∗

S1(Fα) at least after localization
to the field of rational functions C(~). Additionally, it is easy to see that
integration over the manifold M transforms to integration over F (which in
symplectic situation is always a manifold) preceded by division by E (which
is always invertible in H∗(F,C(~))).

Notice that in this very famous theorem the algebraic-geometrical opera-
tion of ‘localization’ applies to the variable ~ which has cohomological nature.
I think that an adequate understanding of mirror phenomenon requires sys-
tematic application of geometrical constructions to algebraic-topological ob-
jects: we will have to compute residues, integrate differential forms, solve dif-
ferential equations and even do Morse theory in the spaces of (co)homological
nature.

The following lemma gives another example from ‘homological geometry’
(some other, less trivial examples one can find in [8]).

Lemma–Example. Let S1 act on CN by diagonal matrices
diag(eiτr1, ..., eiτrN). Then

H∗
S1(CPN−1) = C[p, ~]/((p− r1~)...(p− rN~)).

The push forward operation is given by the formula

f(p, ~) 7→
1

2πi

∮
f(p, ~) dp

(p− r1~)...(p− rN~)
.
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This lemma presumes the following explicit description for p. Let ω be
the standard symplectic Kahler form on CPN−1 obtained by the symplectic
reduction of the standard form ∼

∑
dzj ∧ dz̄j in CN on the unit level of the

Hamiltonian
∑
|zj|

2. Let H be the Hamiltonian of the S1-action obtained
by such reduction from

∑
rj |zj|

2. Let θ be the standard contact 1-form on
ES1 = S∞ (its differential equals the pull back of ~ on CP∞). Then the
2-form Ω = ω + d(Hθ) on CPN−1 × ES1 is closed and projectable to the
quotient by S1 (see for instance M.Audin [5]). Therefore it determines an
equivariant cohomology class of CPN−1 which we denote p. Its restriction to
fibres over BS1 coincides with [ω] ∈ H2(CPN−1). In the De Rham model p
is represented by ω+~H where the hamiltonian H of the circle action should
be shifted to have critical values r1, ..., rN.

Proof. The equivariant cohomology algebra in question coincides with the
equivariant cohomology of CN−0 with respect to the action of S1×T 1 where
T 1 is the scalar action, and the answer is well known in the theory of toric
varieties (see [5]). Independently on what an intelligent proof of the push
forward formula could be, it follows from Duistermaat–Heckmann formula
which expresses the push forward as the sum of residues of the 1-form above.

2 Floer homology and D-modules

We intend to explain here a rather general mechanism that relates algebraic
geometry of rational curves in Kahler manifolds with linear PDE.

Let a compact complex manifold M be provided with a holomorphic
action of the complex circle C−0. Whenever we are given an invariant Kahler
form on M the action of the real circle S1 ⊂ (C − 0) turns into a locally-
hamiltonian action with the Hamilton functionH (while the ‘imaginary’ part
R+ ⊂ (C−0) of the complex circle determines the action of the gradient flow
of H with respect to the real part of the Kahler metric).

Imagine that H is multiple-valued indeed and becomes well defined only
on a covering M̃ → M . Consider M̃ as a symplectic manifold with the sym-
plectic form ω and the H-hamiltonian S1-action lifted from M and introduce
the notations: q — for a covering transformation M̃ → M̃ , and p — for
the equivariant closed 2-form ω + ~H on M̃ (normalized in such a way that
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q∗(H) = H − 1 and therefore q∗(p) = p + ~(q∗H −H) = p− ~ ).
Consider p and q as operators of wedge-product by p and of pull-back by

q acting on the equivariant De Rham complex or on its cohomology. Then
we find the following remarkable commutation relation:

pq − qp = ~q.

This commutation relation has two famous representations:

• coordinate, p = ~
d
dt
, q = et×, acting on functions of exp t, and

• impulse, acting on functions of p as the shift q : p 7→ p − ~ and as
multiplication by p respectively.

In other words, the S1-equivariant cohomology of M̃ should carry the
structure of a (holonomic) module over the ‘Heisenberg’ algebra D of dif-
ferential operators (or its finite-difference Fourier partner) on a circle, more
generally — torus. As far as I know this is one of very few occurrences of
non-commutative objects in algebraic topology.

‘Unfortunately’ the domain of this construction does not contain finite-
dimensional Kahler manifolds: as it follows from a simple argument involving
Lefschetz’ isomorphism, a non-hamiltonian symplectic action on such a man-
ifold does not have fixed points.

We intend to apply this construction — informally — to the case where
M is the space LX = Maps0(S

1, X) of free contractable loops in a compact
Kahler manifold X. The loop space inherits all the structures (complex, Rie-
mannian, symplectic, Kahler) that X has. For instance, if ω is a symplectic
form onX and v, w are two vector fields onX along a loop γ then the formula∮

ω(v(t), w(t))dt

determines a symplectic form on LX. Besides this, LX has a circle action in-
duced by translations on the source S1. This action preserves the symplectic
form on LX (since dt is translation-invariant). It is easy to see that the cor-
responding Hamilton function H is the action functional : to a contractable
loop γ, it assigns the symplectic area of a disk D contracting the loop,

H(γ) = “

∮
γ

xdy ” =

∫∫
D

ω.

7



Since another disk with the same boundary may have different area, the
action functional is (usually) multiple-valued with periods determined by
symplectic periods of ω on π2(X).

The localization theorem for equivariant cohomology does not apply liter-
ally to the infinite-dimensional loop space. However the cohomology theory
that we intend to use for loop spaces is also not the usual one but rather
Floer’s or semi-infinite. This means that the cochain complex should be
constructed from Morse cells of the action functional H (they always have
infinite dimension and infinite codimension). The remarkable observation
(exploited by Floer [8]) that the gradient flow of the action functional con-
sists in analytic continuation of loops to holomorphic cylinders relates Floer
homology theory with geometry of holomorphic curves in X.

In this paper we need S1-equivariant Floer cohomology of the universal
covering L̃X. Such Floer cohomology is not easy to define rigorously (cf.
[7],[8],[9]) but very easy to compute. The equivariant Morse–Smale–Bott–
Novikov–Floer complex, by definition, equals the cohomology of the critical
set of the action functional. The critical points (= constant loops) form a
copy of the manifold X duplicated at each ‘floor’ of the covering L̃X → LX.
The boundary operator in the complex should be taken trivial (due to a ge-
ometrical argument of Morse-theoretic nature that proves the corresponding
finite-dimensional theorem, see [10] for more detail). Therefore the Floer
cohomology in question is, as an additive object,

FH∗
S1(L̃X) = H∗(X,C[q, q−1](~) ).

Here C[q±1] stands for the group algebra of the lattice π2(X) which we iden-
tify with Zk by choice of a basis so that q = (q1, ..., qk). (In many cases one
needs some completion of the Laurent polynomial algebra — exactly as in
Morse–Novikov theory.)

According to the original Floer’s viewpoint, Floer cohomology does not
have a natural multiplicative structure, but bears a module structure over
the usual cohomology (one can intersect semi-infinite cycles with cycles of
finite codimension). Assuming for simplicity that X is simply connected we
can choose a basis of symplectic forms in H2(X) dual to the basis chosen in
the lattice π2(X) = H2(X), construct corresponding S1-invariant symplectic
forms ω1, ..., ωk and action functionals H1, ..., Hk on the loop space L̃X and
define equivariant 2-forms pi = ωi + ~Hi, i = 1, ..., k.
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We come to the conclusion that equivariant Floer cohomology bears the
structure of a module over the algebra D of operators p1, ..., pk, q

±1
1 , ..., q±1

k

satisfying the relations

pipj = pjpi, qiqj = qjqi, piqj − qjpi = δij~qi, i, j = 1, ..., k.

This D-module structure in equivariant Floer cohomology explains the
role that differential equations play in algebraic geometry of rational curves.

1. Since M = FH∗

S1(L̃X) (considered as a space of functions of q with
values in H∗(X)) is a free C[q±1]-module of finite rank (= dimH∗(X)),
the D-module in question has a good chance to be holonomic. Ac-
cording to general theory (thanks to M.Kapranov who taught me this
construction), such a D-module determines a locally constant sheaf

HomD(M,O).

Here D is the algebra of differential operators on the torus with coor-
dinates q1, ..., qk, and O is the sheaf of holomorphic functions on the
torus. In this way we encode the D-module structure in equivariant
Floer cohomology by means of a flat connection in the bundle over the
torus with the fibre H∗(X).

2. While the D-module structure and the locally flat connection described
above have invariant meaning, the differential equations arise in a non-
invariant way when one considers resolutionsM←DN ← ... and thus
chooses generators. However in our situation there is a canonical choice
of a vector space generatingM. Consider a cycle Γ in X and generate
a semi-infinite cycle in L̃X as the union of all gradient trajectories of
the action functional outgoing Γ considered as a critical set on the ‘zero’
floor of the covering L̃X → LX. The semi-infinite cycle consists of all
those algebraic loops which are boundary values of holomorphic maps
ϕ : {|z| ≤ 1} → X of the unit disk, with ϕ(0) ∈ Γ. It is independent
on the choice of the action functional and invariant with respect to the
circle action on L̃X . Therefore it represents an equivariant Floer class
inM.

In this way we embedH∗(X) toM as a subspace of ‘geometrical cycles’
generating M over C[q±1]. In coordinates, if c1, .., , cN is a basis in
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H∗(X), a local homomorphism M→ O is given by N local functions
f1, ..., fN of q. Since

picα =
∑

β

aβ
iαcβ

where a’s are some functions of q (and may be ~), and pi act on fα ∈ O
as ~qi∂/∂qi, we obtain the differential equations

~qi
∂

∂qi

fα =
∑

β

aβ
iαfβ , i = 1, ..., k

expressing the fact that homomorphisms M → O are horizontal sec-
tions of our locally flat connection.

It is that system of linear PDE which one usually considers in connec-
tion with quantum cohomology theory (see [9], [10] for more detail and
references).

3. More generally, one can pick an element c ∈ M and generate a D-
submodule Dc which is therefore identified with the quotient D/Ic by
the left ideal annihilating c. Generators of the ideal are the ‘higher
order linear differential equations satisfied by c’.

This construction is especially convenient if the cohomology algebra
H∗(X) is multiplicatively generated by 2-forms (as in the case of toric
or flag manifolds). In such a case one can choose c to be ‘the fundamen-
tal semi-infinite cycle’ i. e. apply the above construction of equivariant
Floer cycles to the fundamental cycle Γ in X. Such c consists of bound-
ary values of all holomorphic disks in X and, under the assumption
made, generatesM over D (without the assumption it generates how-
ever a submodule of principal importance in connection with rational
curves).

4. Passing to the quasi-classical limit ~ → 0 from D to the algebra of
commuting variables p, q with the Poisson bracket

{pi, qj} = δi,jqi

one obtains from the left ideal Ic a commutative Poisson ideal I in
the Poisson algebra C[p, q±1] of function on the cotangent bundle of the
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torus. The ideal I can be interpreted as an ideal of equations of some
Lagrangian subvariety L in the cotangent bundle — the characteristic
variety of the D-module D/Ic.

The algebra C[p, q]/I is nothing but the quantum cohomology algebra
of X (or a subalgebra in it generated by H2(X), see [9], [10] for various
constructions of Witten’s quantum cohomology).

In particular this means that such quantum cohomology algebras are
algebras C[L] of functions on Lagrangian varieties (cf. [10]) or, in other
words, that the Poisson bracket F,G of two relations between p and q
in a ‘Floer–Witten cohomology algebra’ is a relation again.

Of course, constructions described above, are far from being rigorous
mathematical definitions. However we will see in examples how they work,
what are the differential equations, and even will be able to write down
complete solutions of these differential equations in cohomological terms.

3 Example: Projective spaces

The complex projective space CP n−1 can be considered either as the quotient
of Cn − 0 by the diagonal action of the complex ‘torus’ TC = C − 0 or as a
symplectic quotient of Cn//T by its real subtorus T ⊂ TC.

We are going to study the ‘semi-infinite topology’ of the space

M∞ = (non-zero n-tuples of polynomials in z) /TC.

It has finite-dimensional approximations by the analogous spacesMd with the
degree of polynomials bounded by d. On one hand, Md is a compactification
of the space of degree d parametrized rational curves in CP n−1. On the other
hand, the limit M∞ of these spaces can be treated as Floer’s fundamental
cycle in the projectivized space of n-tuples of Laurent polynomials in z. The
latter, let us denote it M , is a good substitute for the universal covering of
the space of algebraic loops in CP n−1. The covering transformation group Z

acts on M by simultaneous multiplication of the n polynomials by (a power
of) z.

The other circle, S1, acts on M by rotation of loops z 7→ e2πiφz.
Now we are going to realize our ‘equivariant Floer homology’ program,

at first — using very simple formal computations with divergent infinite
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products, and then reproduce the same results using only well-defined math-
ematical objects.

1. According to our Lemma-Example, S1-equivariant cohomology of M
(computed as a limit of such cohomology for finite-dimensional ap-
proximations of M using Laurent polynomials of bounded degrees) is

C[p, ~]/ Π∞
m=−∞(p−m~)n.

(whatever it means!)

The fundamental semi-infinite cycle [M∞] ⊂M is Poincare-dual to the
class

∆ = Π∞
m=1(p +m~)n.

Since q(p) = p−~, we find that ∆ satisfies the finite-difference equation
q∆ = pn∆. Therefore the left ideal I∆ in the algebra D is generated
by pn − q.

In the ‘coordinate’ representation of differential operators it transforms
to the differential equation

(~
d

dt
)nf(t) = et f(t).

In the quasi-classical limit this ‘PDE’ generates the Lagranginan variety
L = {(p, q)|pn = q} while the symplectic structure is q−1dp ∧ dq.

The algebra C[L] = C[p, q±1]/(pn − q) is the quantum cohomology
algebra of the complex projective space, and the differential equation
in question is the one that the quantum cohomology theory associates
to CP n−1.

2. Consider the D-moduleM = D/I∆ and compute the space of solutions
HomD(M,O) of our differential equation. It seems to be a general rule
that such a space has an explicit description in cohomological terms.

Consider the Borel localization isomorphism of equivariant cohomology
of M with that of the fixed point manifold. The latter consists of copies
of CP n−1 numbered by the elements k ∈ Z of the covering transforma-
tion lattice (a Laurent n-tuple represents a fixed point if and only if it
is (a1z

k : ... : anz
k)).
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Denote C an equivariant cohomology class which has Z-invariant lo-
calizations (i. e. restricts to the same cohomology class in each copy of
CP n−1). Then the equivariant classes ΓC = ept/~C satisfy

pΓC = ~
d

dt
ΓC , q

∗ΓC = etΓC

and thus provide the Fourier transform from the impulse to the coor-
dinate representation, in the following sense:

〈ΓC , ·〉 :M→O

is a homomorphism over D. Here 〈 , 〉 means equivariant intersection
index with values in C[[~]], and q∗ — the operator adjoint to q.

Therefore fC(t) = 〈ept/~C,∆〉 are solutions to our differential equation.

3. Explicitly, according to the second part of our Lemma-Example,

fC(t) =
1

2πi

∮
ept/~ C dp

pn(p− ~)n(p− 2~)n...

= ~
1−n

∞∑
d=0

edt

~nd
Res0

ePtCdP

P n [(P + 1)(P + 2)...(P + d)]n
1

Π∞
m=1(~(P −m))n

.

Here P = (p−d~)/~ can be considered as a nilpotent variable, P n = 0,
and C — as a polynomial in P . Notice that C[P ]/(P n) is the cohomol-
ogy algebra of CP n−1, and 〈a, b〉 = Res0 ab dP/P

n is the intersection
form in the cohomology. The function fC(t) is still not well-defined be-
cause of the divergent infinite product factor on the right. It is however
the same in each summand and independent of t (!). We redefine f sim-
ply by dropping this factor and thus come to the following remarkable
formula for general solution of the differential equation ~nf (n) = etf :

fC(t) = ~
1−n〈

∞∑
d=0

edt

~nd

ePt

[(P + 1)(P + 2)...(P + d)]n
, C(P )〉 .

4. The bra- part of the above formula gives an expansion in q = exp(t)

and log(q) of the vector-function ~f with values in cohomology of CP n−1
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whose components are solutions of our ODE. It can be rewritten in the
form

~f(t, ~) = exp (P log q) [ f0(Q) + f1(Q)P + ...+ fn−1(Q)P n−1 ]

where Q = q/~. It is clear now that the solutions have unipotent mon-
odromy around q = 0. The first component is monodromy-invariant
and is given by the following ‘hyper-geometric’ series

f0 =
∞∑
0

Qd

(d!)k
.

The next component has the form tf0(Q) + f1(Q) with f1(0) = 0, and
so on.

Theorem. Let A denote the Hamiltonian of the S1-action on the projec-
tive space Md of degree-d rational maps to CP n−1, ω — the standard Fubbini
symplectic form on Md. Then

∞∑
d=0

edτ

∫
Md

e(t−τ )(A+ω/~) = ~
1−n〈~f (t, ~),Ω~f(τ,−~)〉

where Ω is the automorphism Ω(P ) = −P of C[P ]/(P n).

Proof: One derives this from the Duistermaat–Heckmann formula by
means of straightforward computations similar to those which we have just
completed, but without any ‘dirty tricks’.

The automorphism Ω can be replaced by the change of notations P := ~P .

This theorem assigns precise geometrical meaning to the differential equa-
tion we are studying and to its solutions: the RHS is a function of two vari-
ables satisfying essentially the same ODE in each of them, and thus picking
various values for τ we will obtain a basis of solutions in t.

On the other hand, the theorem explains also our original ‘naive’ com-
putation. Actually we were computing some Feynman integral,

∫
exp(t(A+

ω/~)), over M∞ or a finite codimension subspace therein. We have found
that the integral formally satisfies our differential equation but probably
diverges. The LHS in the theorem is therefore a ‘regularization’ of the Feyn-
man integral in terms of approximations of M∞ by Md; it involves shifting
the symplectic class tω by τω and replacing the divergent sequence by its
generating series in exp τ .
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4 Hypersurfaces in CP n−1

Let us try now to study semi-infinite topology of spaces of rational curves on
hypersurfaces in CP n−1 using equations of the hypersurfaces.

Let F (x1 : ... : xn) = 0 be a homogeneous equation of degree l of such
a hypersurface X. In the projective space Md of n-tuples (x1(z), ..., xn(z))
of polynomials of degree ≤ d, the condition F (x(z)) = 0 for all z describes
a subvariety invariant with respect to the Möbius group. Let us find the
equivariant cohomology class that such a subvariety would represent if its
equations were non-singular.

The degree of the polynomial F (x(z)) = A0 + A1z + ... + Aldz
ld does

not exceed ld and its coefficients (A0, ..., Ald) (considered as polynomials of
degree l of the n(d+1) coefficients of polynomials xj(z)) form a section of an
(ld+1)-dimensional vector bundle over Md. It is easy to see that this vector
bundle is the tensor product of the (−l)-th power of the Hopf line bundle over
Md with the trivial vector bundle whose fiber is the space V of polynomials
of degree ld in one variable z. The vector bundle is Möbius-equivariant i. e.
the base and the space bear compatible actions of the Möbius group, and
our section is Möbius-invariant.

If the section was transverse to the zero section, its zero locus would
represent the equivariant Euler class of the vector bundle, and this is the class
that we are going to compute, replacing as usually the Möbius group with its
maximal torus S1. By the equivariant Euler class of a G-equivariant bundle
W → Y we mean of course the usual Euler class of the bundle WG → YG.

One can compute the S1-equivariant Euler class by simply looking at
the weights of the circle action. With our standard notations (p, ~) for the
generators of the equivariant cohomology of Md the Euler class is

Ed,l = lp(lp− ~)(lp− 2~)...(lp− ld~).

Now passing to the limit d→∞ we perform the same formal operations
as in the previous section, but with the D-module generated by

∆l = Π∞
m=0(lp−m~)

in the equivariant cohomology of M∞. A motivation for this is the naive idea
that the class ∆l should represent the Floer fundamental cycle in L̃X for our
projective hypersurface X.
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1. The expression

∆ ·∆l = Π∞
m=1(p +m~)nΠ∞

m=0(lp−m~)

satisfies the finite-difference equation

pn−1∆ ·∆l = q[ l(lp+ ~)(lp+ 2~)...(lp+ (l − 1)~)∆ ·∆l ].

In coordinate representation this relation becomes the differential equa-
tion

~
n−l(

d

dt
)n−1 f = et · l(l

d

dt
+ 1)...(

d

dt
+ l − 1) f .

Notice that for n = l = 5 it is exactly the ODE from Introduction!

2. Solutions of this equation can be found in the form

〈ept/~C,∆ ·∆l〉 =
1

2πi

∮
ept/~lp(lp− ~)(lp− 2~)... Cdp

pn(p− ~)n(p− 2~)n...
.

Notice that the nilpotent variable P = (p/~ − d) satisfies P n−1 = 0
since each residue has the form

(invertible function)C
lPdP

P n
.

Rewriting the sum of residue as an intersection index we find ourselves
in the algebra C[P ]/(P n−1) with the intersection pairing 〈P a, P b〉 = l
for a + b = n − 2 and = 0 otherwise. This is exactly the image of
H∗(CP n−1) in the cohomology algebra H∗(X) of the hypersurface with
the intersection index of cycles in X.

3. In these notations the solutions are

fC = ~
2−n〈ePt

∞∑
d=0

(
et

~n−l
)d (lP + 1)...(lP + ld)

[(P + 1)...(P + d)]n
, C(P )〉.

Notice that this formula gives n−1 independent solutions which means
that for l > n we should rather think of our (l− 1)-st order differential
equation as of ‘an (n − 1)-st order pseudo-differential one’. (By the
way, this indicates how quantum cohomology theory should be affected
by the negative 1-st Chern class of X, cf. [9]).
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4. The solutions have unipotent monodromy around q = 0, and the
invariant solution is given by the following hypergeometric series of
Q = et/~n−l:

f0(Q) =
∞∑

d=0

(ld)!

(d!)n
Qd.

One can also interpret ~2−n〈~f(t, ~), ~f(t,−~)〉 as the generating function

∞∑
d=0

edτ

∫
Md

Ed,l e
(t−τ )(A+ω/~)

for the sequence of integrals in Md over equivariant Euler cycles.
One more rigorous (but a bit ugly) interpretation of ~f : computing the

integrals
∫
ept/~Ed,lC over Md one should confine only contributions of global

maxima of A and take the sum over all d.

Our computation can be easily generalized to complete intersections in
toric manifolds — we will write out the details elsewhere.

5 Quintics in CP 4

Consider now the case when X is a quintic hypersurface in CP 4. It is known
that on a generic quintic rational curves are situated in a discrete manner
indeed, and we can pretend that their numbers nd are known, in order to
compute the D-module M for X directly.

The complex dimension, predicted by the Riemann–Roch formula, of the
space of algebraic loops in X equals 3, and the loops themselves are rep-
resented by various holomorphic parametrizations of the rational curves in
X. Therefore the space L̃Xalg should have many irreducible components at-
tached to each other in a rather complicated manner. Instead of computing
equivariant cohomology of this complicated space we intend to compute the
‘Feynman path integrals’

∫
exp (pT/~) over Floer cycles as the sum over the

3-dimensional components and then find the differential equation to which
these integrals satisfy as functions of T .
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The Floer fundamental cycle, by ‘definition’, consists of all gradient tra-
jectories of the action functional outgoing the critical set X on the zero
floor of the covering L̃X → LX. It includes (1) constant loops, (2) Möbius
reparametrizations of rational curves inX, (3) multiple covers of such curves.

1. Constant maps

Their contribution is given by the integral
∫

X

epT/~C = ~
−3

∫
X

ePTC(P ) = ~
−3〈ePT , C(P )〉

where P 4 = 0 and 〈P 3, 1〉 = 5.

2. Embeddings CP 1 ⊂ X of degree d

Consider a rational curve of degree d in X. The space of degree-1 maps
from CP 1 to this curve compactifies into the projective space CP 3 of
pairs of linear polynomials. This projective space can be considered as
a compactified irreducible component of the space L̃Xalg. The action
of S1 on CP 3 has two copies of CP 1 as the fixed point set. They
correspond to constant loops on zero and d-th floors of the covering,
namely to the constant loops with values in our rational curve in X.

Denote r the generator in the equivariant cohomology algebra
C[r, ~]/(r2(r−~)2) of CP 3. Since our rational curve has degree d in X,
r = pd where p stands for our usual equivariant class ω + A~ on L̃X.
Contribution of this CP 3 into the path integral equals

∫
epT/~C =

1

2πi

∮
epT/~Cdr

r2(r − ~)2
= d3

~
−3 1

2πi

∮
eρTCdρ

ρ2(ρ − d)2

= d3
~
−3〈ePT [

1

(P − d)2
+

edT

(P + d)2
], C(P )〉

where P 2 = 0 and 〈P, 1〉 = 1.

3. Multiple covers

The space of rational maps to CP 1 of degree m compactifies into
CP 2m+1. It has ‘wrong’ dimension which means that such maps con-
sidered as algebraic loops represent non-transverse intersection points
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of two ‘non-algebraic’ Morse–Floer cycles — an ‘up-going’ cycle and
a ‘down-going’ one. One takes care of this non-transversality in the
following way.

The two cycles consist of loops which extend holomorphicly to the inte-
rior and exterior of the unit disk respectively. Non-transversality means
that the sum of tangent spaces has positive codimension, and the quo-
tient by this sum forms a conormal bundle over the actual intersection
set. In order to compute contributions of this intersection set into in-
tersection indices or integrals one should perturb the cycles to a general
position. However, since the cycles are already ‘transverse’ in the most
of directions (except for the conormal ones), instead of perturbing the
cycles one can replace the fundamental cycle of the actual intersection
by the Euler cycle of the conormal bundle.

Consider a generic point φ ∈ CP 2m+1 in the actual intersection set.
The intersection of tangent spaces to our cycles at φ is the space
H0(CP 1, φ∗TX) of holomorphic sections of the tangent bundle to X
induced to CP 1 by means of the map φ : CP 1 → X. Discreteness of
all rational curves on generic quintics actually means that the normal
bundle to such a curve in X is O(−1)⊕O(−1). Therefore for a cover
of multiplicity m the induced tangent bundle

φ∗TX ≃ O(2m)⊕O(−m)⊕O(−m)

(where the 1-st summand represents the pull-back of the tangent bundle
to the curve in X). In particular we observe that H0(CP 1, φ∗TX) =
TφCP 2m+1 and thus we are in a position to apply the ‘conormal bundle
trick’ described above.

The conormal space is naturally identified with

H1(CP 1, φ∗TX) ≃ H0(CP 1,O(−2m− 2)⊕O(m− 2) ⊕O(m− 2)).

This space is the direct sum of two copies of the space V of polynomials
of degree m− 2 in one variable z and its dimension equals 2m− 2 (it
agrees with the Riemann–Roch formula, (2m+ 1) − (2m− 2) = 3).

The computation we are performing has been actually done in detail
by Aspinwall–Morrison in [11]. They showed that the conormal spaces
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really form a vector bundle over the compactified space of multiple
covers i. e. over CP 2m+1, and computed the bundle. It is the direct
sum of two copies of OCP 2m+1(−1) ⊗ V ∗ where V is the trivial bundle
with the polynomial space (denoted V in the previous paragraph) as
the fiber. This description takes in account the natural Möbius group
action on the conormal bundle. Looking at the weights of this action,
we can complete our computation: the S1-equivariant Euler class of
the conormal bundle in the equivariant cohomology algebra of CP 2m+1

equals

(r − ~)2(r − 2~)2...(r− (m− 1)~)2 ∈ C[r, ~]/(r2(r − ~)2...(r−m~)2).

Therefore this component of the Floer fundamental cycle contributes
to the integral as

∫
epT/~C =

1

2πi

∮
epT/~Cdr

r2(r −m~)2
= d3

~
−3 1

2πi

∮
eρTCdρ

ρ2(ρ − dm)2

= d3
~
−3〈ePT [

1

(P − dm)2
+

edmT

(P + dm)2
], C(P )〉

where ρ = p/~, P 2 = 0 and 〈P, 1〉 = 1.

Of course this formula for m = 1 coincides with the previous one.

Now we should take the sum of these contributions over all rational curves
in X.

First of all let us find the differential equation to which the sum satisfies.
If we differentiate two times in ~d/dT then all the terms disappear, except
for

d3
~
−1〈ePT · edmT , C(P )〉

(where P 2 = 0, 〈P, 1〉 = 1) and one more term, from Constant maps, which
can be written as 5〈ePT , C(P )〉 where again P 2 = 0 and 〈P, 1〉 = 1. The
total sum equals

~
−1〈ePT [5 +

∞∑
d=1

ndd
3

∞∑
m=1

edmT ], C(P )〉.
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Therefore if we divide the sum by

K(eT ) = 5 +
∞∑

d=1

ndd
3edT

1− edT

we obtain ~−1〈ePT , C(P )〉 which is annihilated by the 2-nd derivative in T .
Thus our ‘path integral’ satisfies the equation

(
F ′′

K
)′′ = 0 where ′ = ~

d

dT
.

On the other hand, the sum of all componentwise integrals actually diverges
because of some infinite sums (proportional to

∑
ndd

3 =∞) in the constant
and linear terms in T . In order to extract from our formulas the general
solution to our differential equation, we should — exactly in the same way
as we actually did in the previous section — in each Duistermaat-Heckman
integral confine only its localization near the maximum of the Hamiltonian
i. e. throw away all left residues and keep right ones. The resulting sum can
be written in the uniform notations P 4 = 0, 〈P 3, 1〉 = 5, that is in terms of
the even part of the cohomology algebra of X, as

~F (T ) = ePT (1 +
1

5

∞∑
d=1

ndd
3

∞∑
m=1

P 2edmT

(P + dm)2
) ,

FC(T ) = ~
−3〈~F (T ), C(P )〉.

Notice that the first two components of ~F equal 1 and T .

6 The ‘Yukawa coupling’

Now we are ready to compare our two approaches to rational curves on
quintics. The ‘naive’ approach based on embeddings of quintics into CP 4

gave rise to the cohomology-valued vector-function

~F (t) = ePt

∞∑
d=0

edt (5P + 1)...(5P + 5d)

(P + 1)5...(P + d)5
.

It should be compared with the ‘mature’ function ~F (T ) found in the previous
section.

The Mirror conjecture for quintics now says that
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The two curves, ~F and ~f , considered as non-parametrized
curves in the cohomology algebra Heven(X) = C[P ]/(P 4) are pro-
portional (with the function f0(e

t) =
∑

(5d)!edt/(d!)5 as the pro-
portionality coefficient),

or, in other words, that

Cones over the curves ~F and ~f concide.

We will show now how this form of the conjecture induces the ‘strange’
computational procedure described in Introduction.

First of all notice that the differential operators annihilating components
of our curves are self-adjoint. This means that the differential equations
are Euler-Lagrange equations of some variational principles and are there-
fore equivalent to some linear hamiltonian systems. In particular, the space
of solutions bears a natural symplectic structure. For our equations, the
space of solutions can be identified with the dual of the cohomology algebra
Heven(X) and one can find the symplectic structure to coincide with 〈·,Ω·〉
where Ω(P i) = (−P )i is the diagonal operator from the end of Section 3.

We claim that the cone in question is Lagrangian with respect to this sym-
plectic form. Actually it is a general fact from the theory of linear variational
ODE. A higher order linear ODE determines a curve in the dual projective
space of the space of solutions: to a time moment t the curve assigns the
hyperplane of all solutions vanishing at this moment. If the equation is vari-
ational, then the space of solutions is symplectic and the curve is self-dual:
its osculating hyperplane is skew-orthogonal to its application point (and
the whole osculating flag is self-dual i. e. coincides with the flag of the skew-
orthogonal complements). In dimension 4 such self-duality means that the
cone over the curve is Lagrangian.

Now let us figure out a geometrical meaning of the Yukawa coupling in the
generality suitable for Calabi–Yau 3-folds. Given a Lagrangian submanifold
L in a linear symplectic space (a maximal family of algebraic Calabi–Yau
3-folds Y always determines a Lagrangian manifold in H3(Y )), one can de-
fine its ‘symplectic curvature’ which turns out to be a totally symmetric
3-differential on L. Indeed, in a neighborhood of a point x ∈ L, L can be
identified with a section of the cotangent bundle T ∗(TxL) of its tangent plane.
Such a Lagrangian section is the graph of the differential dφ of some function
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φ on L vanishing at x. In our situation dxφ and d2
xφ also vanish and thus

d3
xφ is a well-defined 3-tensor on TxL. One can see that it is independent on

the choice of the cotangent bundle structure in the space.
If the Lagrangian submanifold is conical and therefore determines a Leg-

endrian submanifold in the contact projective space, one can interpret the
3-differential as the ‘contact curvature’ — a totally symmetric 3-differential
on the Legendrian submanifold, with values in the 2-nd tensor power of the
Hopf bundle.

In any way, in our simple situation of the Lagrangian cone over a para-
metrized curve ~f(t) the 3-differential restricted to the curve is

Y (t) = 〈 ~f ′′′(t),Ω~f(t)〉(dt)⊗3.

When the curve is replaced with a proportional curve ψ~f , the 3-differential
transforms to ψ2Y . If the curve is given by a variational differential equation,
the symplectic curvature can be read directly from the quadratic Hamiltonian
H: it is essentially Hdt where the quadratic form H should be restricted to
the tangent plane of our Lagrangian submanifold. Therefore one can express
the 3-differential through coefficients of the differential equation.

Since we are in a possession of solutions of our differential equations we
can find the ‘Yukawa coupling’ Y directly.

For the curve ~f

Y (t) = [(
d

dt
)3|τ=t

∑
d

edτ
~

3

∫
Md

ep(t−τ )/~Ed,5](dt)
3

= [
∑

d

edt 1

2πi

∮
p3Ed,5(p, ~)dp

p5...(p− d~)5
](dt)3

= [
∑

d

edt55d+1](dt)3 =
5(dt)3

1− 55et
.

On the other hand, from the explicit formula for ~F we find

~F ′′′ = K(eT )P 3/5
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and therefore
Y (T ) = K(eT )(dT )3.

If our two curves are proportional indeed, then the 3-differentials will
coincide after suitable transformations. The ‘mature’ curve has the form
1 + PT + ... and the ‘naive’ one is f0(e

t) + P (tf0(e
t) + f1(e

t)) + ... where

‘...’ mean terms with P 2 and P 3. Thus if we divide ~f by f0 the curves will
coincide up to parametrization. This ‘renormalizes’ Y (t) to the form from
Introduction. On the other hand it identifies T with t + f1(e

t)/f0(e
t) and

thus shows how the ‘mature’ parameter T can be found from solutions of the
‘naive’ equation.

Although the conjecture that the curves are proportional is a statement
about two objects of the same nature, it still remains open. According to a
remark of E.Witten in the paper [12] (where he studies models of CTFT also
based on embeddings of Calabi–Yau hypersurfaces into projective spaces),
one should expect the two curves to coincide after a ‘renormalization pro-
cedure’ which changes the magnitude and parametrization only: “All other
parameters are believed to be ‘irrelevant’ in the sense of the renormalization
group” [12]. I am thankful to D.Morrison who pointed me to this paper.

P.S. After this paper had been completed, V.A.Ginzburg gave me the
preprint [13] by M.Kontsevich where he also treats rational curves on quintics
as solutions to equations induced by the equation of the quintic X in CP 4.
He finds the numbers nd as Euler numbers of some vector bundles which
however live over moduli spaces of stable holomorphic maps to CP 4. They
differ from our compactified map spaces CP 5d+4 by a way of compactification
(which seems to resolve singularities of our compactifying strata). Therefore
the ‘mirror conjecture’ describes how such a resolution should affect our path
integral.
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